20 research outputs found

    Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects

    Get PDF
    After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature

    Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects

    Get PDF
    The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is well described. Available data support that MSCs display anticancer activities, and that their reprogramming by cancer cells in the tumor microenvironment induces their switch toward pro-tumorigenic activities. Here we discuss the recent evidence of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer cells through the metabolic reprogramming necessary to maintain their malignant behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the establishment and maintenance of immunosuppression in the tumor microenvironment. We also discuss the mechanisms of tumor microenvironment mediated reprogramming of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells, and tumor extracellular matrix. Finally, we summarize the emerging strategies for reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells

    A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    No full text
    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size

    Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment

    No full text
    Breast cancer is the most common cancer in women worldwide. Understanding the biology of this malignant disease is a prerequisite for selecting an appropriate treatment. Cell cycle alterations are seen in many cancers, including breast cancer. Newly popular targeted agents in breast cancer include cyclin dependent kinase inhibitors (CDKIs) which are agents inhibiting the function of cyclin dependent kinases (CDKs) and agents targeting proto-oncogenic signaling pathways like Notch, Wnt, and SHH (Sonic hedgehog). CDKIs are categorized as selective and non-selective inhibitors of CDK. CDKIs have been tried as monotherapy and combination therapy. The CDKI Palbocyclib is now a promising therapeutic in breast cancer. This drug recently entered phase III trial for estrogen receptor (ER) positive breast cancer after showing encouraging results in progression free survival in a phase II trials. The tumor microenvironment is now recognized as a significant factor in cancer treatment response. The tumor microenvironment is increasingly considered as a target for combination therapy of breast cancer. Recent findings in the signaling pathways in breast cancer are herein summarized and discussed. Furthermore, the therapeutic targeting of the microenvironment in breast cancer is also considered

    Global phosphoproteomic analysis identifies SRMS-regulated secondary signaling intermediates

    No full text
    Abstract Background The non-receptor tyrosine kinase, SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites) is a member of the BRK family kinases (BFKs) which represents an evolutionarily conserved relative of the Src family kinases (SFKs). Tyrosine kinases are known to regulate a number of cellular processes and pathways via phosphorylating substrate proteins directly and/or by partaking in signaling cross-talks leading to the indirect modulation of various signaling intermediates. In a previous study, we profiled the tyrosine-phosphoproteome of SRMS and identified multiple candidate substrates of the kinase. The broader cellular signaling intermediates of SRMS are unknown. Methods In order to uncover the broader SRMS-regulated phosphoproteome and identify the SRMS-regulated indirect signaling intermediates, we performed label-free global phosphoproteomics analysis on cells expressing wild-type SRMS. Using computational database searching and bioinformatics analyses we characterized the dataset. Results Our analyses identified 60 hyperphosphorylated (phosphoserine/phosphothreonine) proteins mapped from 140 hyperphosphorylated peptides. Bioinfomatics analyses identified a number of significantly enriched biological and cellular processes among which DNA repair pathways were found to be upregulated while apoptotic pathways were found to be downregulated. Analyses of motifs derived from the upregulated phosphosites identified Casein kinase 2 alpha (CK2α) as one of the major potential kinases contributing to the SRMS-dependent indirect regulation of signaling intermediates. Conclusions Overall, our phosphoproteomics analyses identified serine/threonine phosphorylation dynamics as important secondary events of the SRMS-regulated phosphoproteome with implications in the regulation of cellular and biological processes

    (a) Block diagram of the fluorescence microscope; (b) absorbance/emission spectra of the sample under test (adapted from [10]).

    No full text
    <p>The excitation filter passes through lights of 400-499nm which is reflected by the dichroic mirror. The peak absorption and peak emission of the sample is 495nm and 519nm respectively. Emitted light is then passed through the dichroic mirror followed by the barrier filter whose band pass wavelength is 520±18nm. Finally a small camera microscope captures the emitted wavelength, forms an image and sends to a computer.</p

    Results showing (a) Normal cell; (b)-(c) Cancer cells as viewed from our prototype; (d) Same cancer cell when viewed from the commercial microscope (model Olympus IX51).

    No full text
    <p>Results showing (a) Normal cell; (b)-(c) Cancer cells as viewed from our prototype; (d) Same cancer cell when viewed from the commercial microscope (model Olympus IX51).</p
    corecore