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ABSTRACT After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light 

on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic 

effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal 

cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells’ cellular senescence and 

adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility 

to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the 

roles of stromal cells in cancer in the available literature.
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Introduction

Mesenchymal stromal cells (MSCs) are a heterogeneous mes-

enchymal cell population, commonly collected from the bone 

marrow (BM), fat, and other tissues, that includes multipotent 

stem cells capable of differentiating into a number of mesen-

chymal tissues, and thus can contribute to tissue repair. MSCs 

are positive for membranes CD105, CD73, and CD90, and neg-

ative for CD14, CD19, CD31, CD34, CD45, and HLA-DR1,2. 

MSC differentiation potential includes various cell types of the 

mesodermal lineage, such as fibroblasts, adipocytes, endothe-

lial cells, myocytes, chondrocytes, and osteoblasts1, while 

non-mesodermal differentiation, such as into neural, hepatic, 

pancreatic, and gastric cells, is still debated3-6. However, MSCs 

reside not only in the stroma of various tissues and organs, 

but also in the tumor microenvironment, where their role has 

been clarified recently7,8. Overall, a huge body of evidence sup-

ports that MSCs can promote tumorigenic processes, such as: 

(i) angiogenesis, neovascularization and formation of cancer 

stem cell (CSC) niche; (ii) malignant transformation, main-

tenance of cancer cells, and metastasis formation; as well as 

(iii) cancer cell stemness and chemoresistance to anti-cancer 

drugs9,10.

On the other hand, MSCs have become a key tool in tissue 

engineering and regenerative medicine, because they are easily 

collected and have the ability to migrate and home into dam-

aged tissues. Here, they: (i) interact with the microenviron-

ment to drive tissue repair; (ii) differentiate into the specific 

affected cell types to restore or replace damaged tissues; and 

(iii) rescue organ functions, thanks to their high proliferation, 

adhesion, migration, differentiation, and immunoregulatory 

properties11-13. Notably, MSC secretome includes numerous 

factors favoring tissue repair, such as angiopoietin-1, vascu-

lar endothelial growth factor (VEGF), transforming growth 
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factor-beta (TGF-β), fibroblast growth factor (FGF), hepat-

ocyte growth factor (HGF), epidermal growth factor (EGF), 

platelet-derived growth factor (PDGF), granulocyte-colony 

stimulating factor (G-CSF)14-19, as well as other soluble fac-

tors, such as interleukin-6 (IL-6), IL-12, C-X-C motif chemok-

ine 8 (CXCL8), CXCL9, CXCL16, C-C chemokine ligand 20 

(CCL20), CCL25, and monocyte chemoattractant protein-3 

(MCP-3)20-23.

Herein, we provide an overview of recent data suggesting 

that the pro-tumorigenic effects of MSCs as well as MSC-

derived cancer-associated fibroblasts (CAFs) are the con-

sequence of a process of cell reprogramming driven by the 

tumor microenvironment. We also discuss the emerging 

reports suggesting approaches to reprogram these cells to 

mediate anti-tumor effects in vivo, as well as data supporting 

the existence of stromal cells restraining cancer growth in the 

tumor microenvironment.

Pro-tumorigenic effects of stromal 
cells

Immune abnormalities

Immunosuppression
It is well established that MSCs are major drivers of the typ-

ical immunomodulation observed in a solid tumor microen-

vironment. For instance, a recent study using MSCs expanded 

from BM and prostate cancer tissue from independent donors 

showed that tumor-infiltrating MSCs are major drivers of the 

immunosuppressive tumor microenvironment in prostate 

cancer24. The authors reported the ability of prostate cancer- 

infiltrating MSCs to suppress T-cell proliferation through 

immunosuppressive properties comparable to canonical 

BM-derived MSCs. The suppression of proliferation medi-

ated by prostate cancer-infiltrating MSCs was dose-depend-

ent, and the expressions of programmed cell death ligand 1 

(PD-L1) and programmed cell death ligand 2 (PD-L2) were 

upregulated on T cells in the presence of interferon-γ (IFN-

γ) and tumor necrosis factor-α (TNF-α)24. In another study, 

the transcriptome analysis of MSCs from multiple myeloma 

(MM) patients revealed constitutive abnormalities in immune 

system activation, cell cycle progression, and osteoblastogene-

sis that were maintained even in the absence of tumors cells, 

thus strongly suggesting that MSCs may contribute to the 

immune evasion and bone lesions frequently found in MM25. 

MSCs shape the myelodysplastic syndrome microenvironment 

at least in part by inducing suppressive monocytes dampening 

natural killer (NK) cell function26. Moreover, MSCs partici-

pate in oral mucosa carcinogenesis by increasing immuno-

suppressive functions on T-cell proliferation; tumorigenesis 

of tumor- resident MSCs correlated with higher expression of 

cellular proliferative status indicator Ki6727. Interestingly and 

on the same hand, the CXCL8 supporting the survival and 

proliferation of acute myeloid leukemia (AML) cells via the 

phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) 

signaling pathway in the affected BM microenvironment 

would be mainly secreted by MSCs28.

Cellular senescence
The normal aging process and various age-related diseases, 

including some cancers, are marked by a chronic low-grade 

inflammation (“inflammaging”) and cellular senescence 

(“immunosenescence”). The role of MSC immuno modulation 

in shaping a senescent microenvironment in a broad spec-

trum of human malignancies, especially tumorigenesis, has 

been documented extensively29,30. For instance, gastric cancer 

cell-derived exosomes (extracellular vesicles) affect the immu-

nomodulatory functions of MSCs by activating the nuclear 

factor-kappa B (NF-κB) signaling pathway, which in turn 

mediates support to tumor growth by maintaining the inflam-

matory environment and enhancing the ability of MSCs to 

activate immune cells31. AML blasts induce a senescence-asso-

ciated secretory phenotype (SASP) in BM stromal cells through 

a p16INK4a-dependent mechanism, which encompasses the 

irreversible arrest of cell proliferation and the secretion of a 

set of chemokines, proinflammatory cytokines, and growth 

factors32. Similarly, some authors reported the alteration of 

cellular and immune-related properties of BM-derived MSCs 

(BM-MSCs) and macrophages through the release of exosomes 

from K562 chronic myeloid leukemia cell line; exosome con-

centration in BM-MSCs correlated with the enhanced expres-

sion of Dickkopf-related protein 1 (DKK1), wnt5a, CXCL12, 

IL-6, TGF-β, and TNF-α33. Furthermore, senescent breast 

luminal cells promoted carcinogenesis by activating CAFs 

through the inflammatory cytokine IL-834. BM stromal cells 

from patients with myelodysplastic syndrome display a senes-

cence phenotype induced by S100A9-induced Toll-like recep-

tor 4 (TLR4), NLR family pyrin domain containing 3 (NLRP3) 

inflammasome activation, and IL-1β secretion35. TLR4 signa-

ling was also reported to drive MSC commitment to promote 

tumor microenvironment transformation in MM36.
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Cancer-associated metabolic changes

Various authors have reported the involvement of micro-

environmental stromal cells in cancer-associated metabolic 

changes supporting tumorigenic processes. Adaptive meta-

bolic plasticity, i.e., tumor-initiating cell ability to switch 

between oxidative phosphorylation and glycolysis, depending 

on reactive oxygen species, hypoxia, and glucose availability 

in the tumor microenvironment, confers a survival advantage 

to malignant cells in breast cancer, thus representing a poten-

tial target for anti-cancer therapy37. Notably, the overexpres-

sion of O-GlcNAc transferase (OGT), an enzyme involved in 

tumor-initiating cell-mediated rewiring of energy metabolism, 

increases CSC populations and mammosphere  formation 

in vitro and in vivo. The pharmacological or genetic inhibi-

tion of OGT induces a potent reduction of mammosphere 

formation, as well as CD44H/CD24L, ALDH+, and NANOG+ 

tumor-initiating cell populations in breast cancer cells38. 

These observations confirm that the inhibition of adaptive 

metabolic plasticity may serve as a therapeutic strategy to reg-

ulate tumor-initiating activity in breast cancer.

Similarly, pancreatic cancer cells utilize “metabolic reprogram-

ming”, through the enhancement of glycolysis with increased 

lactate production and glycolytic enzyme over expression, to 

satisfy their energy demand and support malignant behaviors, 

despite a hypoxic and nutrient-deficient microenvironment39. 

A study in bevacizumab-resistant glioblastoma suggested that 

chemoresistance in cancer cells inside the hypoxic microenvi-

ronment occurs through: (i) metabolic reprogramming, with 

suppressed oxidative phosphorylation and upregulated glycol-

ysis; (ii) perivascular invasiveness along remaining blood vessels 

in a VEGF- and neo-angiogenesis-independent manner; and 

(iii) enrichment of tumor-initiating stem cells residing in the 

perivascular niche close to residual blood vessels40. In addition, 

exosomes from glioma cells induced a tumor-like phenotype in 

MSCs by activating glycolysis41.

In 2019, a report from Lung and colleagues42 showed that 

the expression of estrogen receptor (ER)-α, the target of endo-

crine therapies in breast cancer that is expressed by most meta-

static breast cancer cells, is regulated by the BM microenviron-

ment. In this study, the induction of estrogen receptor 1 (ESR1) 

mRNA and ER protein downregulation, through a mitogen- 

activated protein kinase (MAPK)-independent mechanism, 

was achieved by the treatment of breast cancer cells with 

conditioned culture media from either cancer-activated BM 

stromal cells or HS5 BM stromal cell line. In addition, thyroid 

hormones, which are well-established pro-tumorigenic players, 

may stimulate tumor growth and neovascularization in vari-

ous solid cancers by activating MSCs through a non-classical 

integrin αvβ3 signaling43. Moreover, the EGF-like superfamily 

member EGFL6, playing an important role during embryonic 

development without any effect on wound healing, mediates 

a crosstalk between cancer and stromal cells to induce stem-

ness and epithelial–mesenchymal transition (EMT) (EMT is 

an important tumorigenic mechanism where epithelial cells 

become MSCs by losing their cell polarity and adhesion abil-

ity, and gaining migratory and invasive properties) in breast 

cancer cells in vitro, thus promoting tumor growth in vivo44.

Cancer-promoting CAFs

CAFs play a pivotal role in cancer progression, partially through 

signaling molecules that may represent potential therapeutic 

strategies for cancer treatment. For instance, the overexpression 

of the potential prognostic factor, heat shock factor 1 (HSF1), 

promotes EMT, proliferation, migration, and invasion in Cal27 

cells. The presence of CAFs expressing CD10 and GPR77 corre-

lates with poor survival and chemoresistance in lung and breast 

cancer patients, and these CAFs supported cancer stemness and 

promoted cancer formation and chemoresistance in patient-de-

rived xenografts45. In addition, HSF1 stimulates tumor growth 

in nude mice and its expression significantly correlates with 

poor overall survival and prognosis in patients with oral squa-

mous cell carcinoma46. Intracellular Notch1 signaling in CAFs 

inversely controls  stromal regulation of the stemness and plas-

ticity of CSCs in melanoma, acting as a molecular switch mod-

ulating tumor heterogeneity and aggressiveness47.

Strong evidence that stromal microenvironment shapes the 

intratumoral architecture in pancreatic tumors was shown by 

a study using single-cell RNA, protein analysis, and high-con-

tent digital imaging of RNA in situ hybridization to assess 

the role of stromal CAFs in the modulation of heterogeneity 

in pancreatic ductal adenocarcinoma (PDA)  models48. The 

authors identified significant single-cell  population shifts 

toward proliferative phenotypes and  invasive EMT linked to 

MAPK and signal transducer and activator of transcription 3 

(STAT3) signaling, which contributed to intratumoral heter-

ogeneity in tumor glands and to differences in stromal abun-

dance and clinical outcome. Furthermore, a study addressing 

the ability of mesenchymal HT1080 fibrosarcoma cell line to 

switch to amoeboid motility (migration plasticity) revealed 

that pharmacological or RNA interference (RNAi)-mediated 
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downregulation of the Arp2/3 complex or decrease of adhe-

siveness to its substrate induced the transition from a lamel-

lipodium-rich to a blebbing phenotype in fibrosarcoma cells, 

but not in normal subcutaneous fibroblasts49. Interestingly, 

still in this study, a significant fraction of fibrosarcoma cells 

expressing the blebbing phenotype exhibited stem cell-like 

features, such as increased efflux of Hoechst-33342 and 

CD133, Oct4, Sox2 and Nanog expression, and demonstrated 

an increased ability to switch to a bleb-rich amoeboid phe-

notype in three-dimensional (3D) collagen gels49.

Stromal cells’ therapeutic potential 
in cancer

Damage repair after chemotherapy

Various reports support the therapeutic potential of 

MSCs in cancer, also for repairing damaged tissues after 

 chemotherapy50,51. For instance, human adipose-derived 

MSCs displayed repairing properties in damaged thymus fol-

lowing chemotherapy in mouse models of blood cancer52. Mice 

showed improvements in the thymic structure and functions, 

as shown by the proportion of circulating and splenic regula-

tory T (Treg) cells and the recovery of T-cell subpopulations.

MSCs slowing tumor progression

In a study involving both human colorectal cancer cells and 

immunocompetent rat models of colorectal carcinogenesis, the 

treatment with BM-derived MSCs interfered with colon cancer 

progression. The effect was partially due to the modulation of 

the tumor microenvironmental immune effector cells, such as 

Tregs, CD8+ cells, and NK cells. In addition, there was evidence 

of Th17 cell activity restoration, macrophage reprogramming 

into regulatory cells performing phagocytosis with reduced pro-

duction of proinflammatory cytokines, a 50% decrease in the 

infiltration rate of CD68+ cells, and a two-fold increase of CD3+ 

cells53. Two microRNAs, i.e., small non-coding RNA mole-

cules silencing post-transcriptional regulation of gene expres-

sion, associated with the capacity of MSCs to attenuate cancer 

growth were identified, namely microRNA 150 (miR-150) and 

miR-7. Similarly, human BM-MSC-derived exosomes overex-

pressing miR-34a inhibited glioblastoma development54,55. In 

another study, intra-BM but not systemic administration of 

BM-MSCs from healthy donors reduced tumor burden and 

prolonged survival of the leukemia-bearing mice54. In this 

study, the MSC senescence observed during disease progression 

was stopped and the BM microenvironment was restored, with 

functional recovery of host myelopoiesis and improvement of 

thrombopoiesis. Moreover, in a bioluminescence imaging study 

monitoring the effects of human umbilical cord-derived MSCs 

in mouse hepatoma tumor models with H7402 cell line, the 

MSC microenvironment effectively inhibited the growth of 

cancer cells56.

Cancer-restraining CAFs

Different studies, both clinical and in mouse models, suggest 

that there may exist at least two populations of MSC-derived 

CAFs, i.e., cancer-promoting CAFs, discussed already, and 

cancer-restraining CAFs57. However, the identity of cancer- 

restraining CAFs remains poorly investigated, due to the lack 

of markers. Interestingly, a cell subpopulation with tumor 

inhibitory functions was isolated and characterized in a can-

cer metastasis microenvironment by using stromal cell lines 

derived from the central nervous system (CNS) metastasis of 

breast and lung cancer patients58. Interestingly, these cells were 

quite homogenous, expressed high levels of collagen, and dis-

played gene expression signatures of CAFs, MSCs, and EMT58. 

Mizutani and colleagues59 reported the glycosylphosphatidy-

linositol-anchored protein Meflin as a potential marker of can-

cer-restraining CAFs. These authors observed that the tissue 

infiltration of Meflin-positive CAFs correlated with a favorable 

patient outcome in PDA. By contrast, Meflin deficiency or low 

expression resulted in a markedly faster tumor progression in a 

PDA mouse model, and either the overexpression of Meflin in 

CAFs or the delivery of a Meflin-expressing lentivirus into the 

tumor stroma was sufficient to suppress the growth of xeno-

graft tumors59. This new marker paves the way for isolation and 

further characterization of CAFs exerting anti-tumoral effects.

Stromal cells follow the program 
dictated by their microenvironment

Stromal cells’ programming by tumor 
microenvironment

Effects of the tumor microenvironment on stromal 
cells

Early studies addressing the composition of the tumor 

microenvironment reported an atypical cellular and 
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molecular microenvironment supporting carcinogenesis and 

chemoresistance60,61. Recently, Coffman and colleagues62 

reported that ovarian carcinoma-associated MSCs, which are 

critical stromal progenitor cells promoting tumor cell growth, 

cancer stemness, and chemoresistance, arise from a process of 

tumor-mediated reprogramming of local tissue MSCs. This 

study also provided strong evidence that tumor- mediated 

MSC conversion is tissue- and cancer-type dependent, and 

requires tumor-secreted factors and hypoxia62. Breast tumor 

microenvironment transforms naive MSCs into tumor- 

forming cells in nude mice; in addition, MSCs pre- exposed 

to a conditioned medium or purified exosomes derived from 

breast cancer cells (MDA-MB-231) form a tumor-like mass 

rich in stromal tissue by 14 weeks when injected into mam-

mary glands of nude mice63. Similarly, CCL5 secreted by 

classic Hodgkin lymphoma cells recruits MSCs and mono-

cytes and enhances MSC proliferation and CCL5 secretion; 

conditioned medium from these MSCs increases tumor 

cell growth and monocyte migration64. Exosomes derived 

from chronic myeloid leukemia cells altered the cellular and 

immune-related properties of BM-MSCs and macrophages 

in vitro33. Moreover, the expression of gene signatures and 

mesenchymal shift in quiescent glioblastoma cells, a source 

of tumor recurrence in highly malignant glioblastoma, was 

observed following their interactions with niche micro-

environment65. Reciprocal reprogramming of CSCs and 

associated MSCs may promote tumor progression in gastric 

cancer66. Consequently, unraveling the signaling molecules 

involved in pro-tumorigenic crosstalks between MSCs and 

tumor environment may lead to novel targets for inducing 

cancer regression and elimination.

Interestingly, asporin, a factor secreted by MSCs following 

cellular interactions within the tumor microenvironment, 

alters the tumor microenvironment and inhibits MSC dif-

ferentiation to drive metastatic progression through CD49d/

CD29 signaling67. MSCs promotes the progression of gastric 

cancer cells through the release of CXCL16, which activates 

STAT3-mediated expression of Ror1 in the cancer cells68. 

Dabbah and colleagues reported that microvesicles derived 

from BM-MSCs of MM patients increase the tumorigenicity 

of MM cells69. In this study, CD49d and CD29 integrin over-

expression in MM-MSC microvesicles correlated with patient 

staging and response to treatment; the concomitant inhibition 

of these molecules resulted in reduced uptake of MM-MSC 

microvesicles (but not normal donor MSC microvesicles), 

inhibition of MM cell signaling, expression of aggressiveness 

markers, and enhanced response to chemotherapy69. This 

study also suggested that the reciprocal interactions of malig-

nant cells and MSCs in breast cancer microenvironment may 

result in the transformation of naive MSCs into cells capable of 

forming explants in nude mice. Notably, pre-metastatic niche 

in distant organs may be created, at least in part, by the transfer 

to stromal cells, such as peritoneal mesothelial cells (PMCs), 

fibroblasts, and endothelial cells, of tumor-derived extracellu-

lar vesicles secreted by tumor-associated macrophages (TAMs) 

into the blood70. STAT4 overexpression in gastric cancer cells 

makes normal fibroblasts acquire CAF-like features via acti-

vating the wnt/β-catenin pathway71. In addition, Guo and 

colleagues72 (in 2019) addressed the potential roles and mech-

anisms of long non-coding RNAs in CSC-like properties and 

EMT in non-small cell lung cancer (NSCLC) using Western 

blot, quantitative reverse transcription polymerase chain reac-

tion (RT-PCR), colony formation, transwell migration, and 

wound healing assays in A549 and H1299 human NSCLC cell 

lines, L9981 and 95D highly metastatic cell lines, and NL9980 

and 95C low-metastatic cell lines. These authors observed 

that knockdown of long non-coding RNA linc-ITGB1 inhib-

ited the expression of various markers of cancer stemness and 

CSC formation by reducing the expression of the EMT-related 

transcription factor Snail. Overexpression of Snail reversed the 

inhibitory effects of linc-ITGB1 knockdown72.

Role of the extracellular matrix
Emerging data strongly suggest that tumor extracellular matrix 

(ECM) and related factors contribute to the controversial role 

of stromal cells in the tumor microenvironment. For exam-

ple, after showing that MM cells, cocultured with BM-MSCs, 

comodulated the phenotype of MM cells in an MAPKs/trans-

lation initiation (TI)-dependent manner, Ibraheem and col-

leagues73 reported that even the decellularized ECMECM of 

BM-MSCs from MM patients was able to induce comparable 

pro-tumorigenic effects. A number of changes in microRNAs 

was shown affecting the MM phenotype and the activation 

of MAPK/TI, EMT, proliferation, and CXCR4, with a role for 

BM-MSC secretomes and microvesicles. On the other hand, 

the decellularized ECM of BM-MSCs from normal donors 

mediated anti-cancer effects, including a rapid and persistent 

decrease in MAPK/TI activation, proliferation, cell count, via-

bility, migration, and invasion73. These authors also provided 

evidence for a synergism between the ECM and microvesicles in 

the modulation of MM cell response to chemotherapy as well as 

in the hierarchy and interdependence of MAPKs/TI/autophagy/

phenotype cascade. In addition, extracellular vesicles released by 

monocytes from chronic myelomonocytic leukemia patients are 
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sufficient to confer a procoagulant state through a tissue fac-

tor-dependent mechanism mediated by MSCs74.

Matrix metalloproteinase-9 (MMP-9) produced by leu-

kemia cells facilitates tumor progression via remodeling of the 

ECM of the BM microenvironment, and MMP-9 deficiency 

in the BM microenvironment reduces leukemia-initiating cells 

and prolongs survival of mice with BCR-ABL1-positive B-cell 

acute lymphoblastic leukemia (B-ALL)75. Similarly, senescent 

MSCs actively remodel the surrounding ECM to drive breast 

cancer cells to a more invasive phenotype76. Interestingly, 3D 

culture studies with cancer and stromal cells in ECM, incor-

porating multiplex quantitative analysis method, may reveal 

the major signaling molecules and mechanisms driving the 

pro- and anti-cancer interactions, providing new therapeu-

tical targets77,78. Notably, in a recent study using a similar 

approach in hepatocellular carcinoma (HCC), cell repopula-

tion of cirrhotic scaffolds showed a unique up-regulation of 

genes related to EMT and TGF-β signaling as well as a high 

concentration of endogenous TGF-β1 in comparison to 

healthy scaffolds and TGF-β1-induced phosphorylation of 

canonical proteins Smad2/379. This study characterized the 

inherent features of ECM micro-environment from human 

cirrhotic liver as key pro-carcinogenic components in HCC 

development. Similarly, MSCs cocultured with colorectal 

cancer cells showed increased invasiveness and proliferative 

abilities due to increased TGF-β1 and decreased p53 levels80. 

TGF-β1 promoted the migration and invasion of HCT116 

and HT29 colorectal cancer cells, and induced the differentia-

tion of MSCs into CAFs through a Janus kinase (JAK)/STAT3 

signaling-dependent mechanism81. Long-term coculture of 

human MDA-MB-231 breast cancer cells with normal human 

MSCs was associated with the formation of 3D tumor sphe-

roids in vitro, with a 14-fold enhanced expression of the breast 

tumor marker urokinase plasminogen activator (uPA)82.

Hypoxia and tumor stiffness
Earlier reports suggested that hypoxia-inducible factor 1 

(HIF-1) may link hypoxia, inflammation, and cancer83,84. In 

addition, recently, stromal cells were reported as mediators of 

the pro-tumorigenic effects of hypoxia and tumor stiffness, 

which are known elements of the solid tumor microenviron-

ment promoting tumor survival, progression, and metastasis. 

Osteopontin, a hypoxia-driven phosphorylated glycoprotein, 

may promote stem cell-like properties and EMT in pancreatic 

cancer cells by activating the integrin αvβ3-Akt/Erk-forkhead 

box protein M1 (FOXM1) signaling in a paracrine manner85. 

Microvesicles derived from human BM-MSCs support human 

osteosarcoma (U2OS) cell growth under hypoxia in vitro and 

in vivo through PI3K/AKT and HIF-1α-dependent mecha-

nisms86. Similarly, hypoxic BM stromal cells-derived exosomal 

miRNAs promote metastasis of lung cancer cells via STAT3-

induced EMT in an in vivo mouse syngeneic tumor model87. 

Moreover, exosomal miRNAs from hypoxic BM-MSCs pro-

moted lung cancer cell metastasis via STAT3-induced EMT88 

and hypoxia-conditioned MSCs promote HCC progression 

through yes-associated protein (YAP)-mediated lipogenesis 

reprogramming56, further suggesting that targeting the com-

munication between MSC and cancer cells may be a potential 

target for anti-tumor therapy.

Interactions of cancer cells and stromal cells in a hypoxic 

microenvironment drive EMT through NOTCH and c-MET 

signaling, and induce immunosuppressive response within the 

microenvironment in PDA, a fatal disease with limited response 

to both immunotherapy and cytotoxic  chemoradiotherapy89. A 

study addressing the end-stage myeloma cell mobilization from 

the BM into peripheral blood revealed that hypoxic BM niches, 

together with a pro-inflammatory microenvironment result-

ing from the interactions between tumor cells and BM stromal 

cells, induce an arrest in proliferation that forces tumor cells to 

circulate into the peripheral blood to seek other BM niches90. 

Hypoxia-induced EMT has been shown with a 17-gene panel 

aimed at assessing NSCLC prognosis91. Similarly, hypoxia-in-

duced acquisition of CSC features in lung cancer cells occurs 

through CXCR4  activation92. In addition, the retention factor 

in the endoplasmic reticulum (RER1) enhances carcinogen-

esis and stemness of pancreatic cancer93. Finally, glioblastoma 

stem-like cell (GSC) phenotype, the worst prognostic marker 

of glioblastoma, persists partially due to the hypoxic microenvi-

ronment-dependent release of extracellular adenosine, thus pro-

moting cell migration, invasion, and tumor recurrence through 

the activation of the A3 adenosine receptor (A3AR)94,95.

MSC-derived CAFs were reported as the link between bio-

physical forces and pro-metastatic signaling in colon cancer, 

as they respond to increased stiffness of the tumor micro-

environment by the activation of the signaling mediated by 

TGF-β family members and activin A, a strong pro-metastatic 

cytokine95. In addition, Saforo and colleagues96 described an 

in vitro cell culturing system incorporating elements of the 

in vivo lung environment, including physiological hypoxia 

(5% O2) and lung fibroblast-derived ECM. Through this cul-

ture system, a rapid expansion of stromal progenitors from 

patient’s lung tumor resections was achieved; these progenitor 



834 Nwabo Kamdje et al. MSCs and the tumor microenvironment

cells retained the secretion of factors associated with cancer 

progression, the expression of pluripotency markers, and the 

ability to enhance tumor cell growth and metastasis96.

Adiposity
It is well established that fat tissue overgrowth in obesity pro-

motes tumor progression97-99. Su and colleagues100 compared 

lean and obese mice grafted with prostate tumors and showed 

that obesity promotes EMT in cancer cells and tumor invasion 

into the surrounding fat tissue. In this study, adipose stromal 

cells induced EMT in prostate cancer cells and made them 

more migratory and chemo-resistant; by contrast, adipose stro-

mal cell targeting suppressed both EMT and chemoresistance 

to docetaxel, cabazitaxel, and cisplatin chemotherapy in human 

prostate cancer cells100. Human adipose-derived MSCs pro-

moted EMT in MCF7 breast  cancer cells by cross- interacting 

with the TGF-β/Smad and PI3K/AKT signaling pathways, in a 

coculture system established to investigate the paracrine effects 

of MSCs on the migration and invasion potential of this aggres-

sive breast cancer cell line101. In  addition, a study in a xenograft 

model of early MM showed that bone niche switching toward 

a “fatty” marrow supports the development of malignant cells 

during carcinogenesis. In this study, MSCs mainly gave rise to 

adipocytes supporting tumor growth by increasing the survival 

and chemoresistance of malignant cells102.

In addition, interestingly, various adipose-derived factors 

were reported to play a role in MSC-mediated pro-tumor-

igenic effects. For instance, adipokine chemerin is a major 

player in obesity-mediated support of cancer progression. 

This cell differentiation promoter and leukocyte chemoat-

tractant factor was reported to promote the growth, prolifera-

tion migration, invasion, and metastasis of cancer cells via the 

recruitment of tumor-associated MSCs and the stimulation of 

angiogenesis pathways in endothelial cells through chemerin 

receptor 1 (CMKLR1), chemerin receptor 2 (GPR1), and 

CCLR2 signaling103.

Reprogramming microenvironment cells for 
anti-cancer effects

Early studies addressing the immunological hallmarks of 

MSCs in the tumor microenvironment revealed various 

molecular mechanisms through which MSCs modulate the 

immune response in the cancer microenvironment and indi-

cated that it may be possible to convert the microenvironment 

from immunosuppressive to immunostimulant104,105.

In vitro studies support the anti-tumor effects of MSCs, but 

these effects can be markedly reduced in vivo by the tumor-

trophic properties of these cells and the direct cell-to-cell inte-

gration with tumor stromal elements. A score of recent reports 

suggests promising strategies for reprogramming micro-

environmental cells to mediate only anti-cancer effects. For 

instance, unlike conditioned medium from human adipose 

MSCs, eicosapentanoic acid-treated adipose MSCs reduce 

mRNA levels of the tumor-associated genes FASN, STAT3, and 

cIAP-2 in MDA-MB-231 and MCF-7 breast cancer cell lines, 

with marked decreases in their glycolysis, inflammation, and 

motility in vivo106.

Mandal and colleagues107 proposed the encapsulation 

of MSCs from the perinatal tissue with the sodium alginate 

biomaterial. The team isolated the 3D structure from the 

microenvironment and observed that the encapsulated MSCs 

displayed: (i) increased proliferation with expression enhance-

ment of pluripotency genes, EMT, immune-modulation, and 

angiogenesis; (ii) increased secretion of VEGF, TGF-β, TNF-α, 

IFN-γ, IL-10 and IL-6, and IL-3β; (iii) and increased expres-

sion of the tumor invasion suppressor protein E-cadherin107. 

Furthermore, treatment of CSCs derived from MDA-MB-231 

and MCF7 breast cancer cell lines with encapsulated MSCs 

lowered CSC viability and migration, with downregulation of 

markers related to angiogenesis, EMT and proliferation, and 

upregulation of Wnt antagonists secreted frizzled-related pro-

tein 4 (sFRP4) and DKK1107.

Prolonged culture of heterogeneous prostatic CAFs resulted 

in a marked decrease in the expression of proliferative endothe-

lial cell surface marker endoglin (CD105), as compared to 

short-culture CAFs, and loss of their tumor expansion potential 

and heterogeneity in 3D cultures and patient-derived xenograft 

tissues108. Engineered human placenta-derived MSCs, armed 

with a double fusion gene containing the herpes simplex virus 

truncated thymidine kinase and firefly luciferase, inhibited the 

tumorigenesis mediated by the HT29 colon cancer cell line 

in nude mice114. Treatment with 5-azacytidine restored IL-6-

increased production in MSCs from myelodysplastic patients116.

A study addressing the response of human MSCs to low-

dose photodynamic therapy revealed that this treatment 

may increase MSC immunogenicity and promote angiogenic 

potential117. In this in vitro study, low-dose photodynamic 

therapy: (i) induced the reorganization of MSC  cytoskeleton, 

with a decrease in cell motility; (ii) induced the inhibition 

of glycogen synthase kinase-3 (GSK-3) and the activation of 

extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) 
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signaling in MSCs; (iii) significantly upregulated the secre-

tion of VEGF-A, IL-8, plasminogen activator inhibitor-1 

(PAI-1), MMP-9, and other proangiogenic factors by MSCs; 

(iv) dramatically inhibited the secretion of pro-tumorigenic 

macrophage infiltration marker CCL2 (MCP-1) by MSCs and 

decreased MSC viability and immunogenicity when cocul-

tured with lymphocytes. In another study, MSCs loaded with 

a photosensitizer successfully shipped these nanoparticles into 

lung cancer tumor sites, enhancing the effects of photody-

namic therapy in vivo110. In addition, irradiated endothelial 

cells decreased the malignancy of liver cancer cells in a cocul-

ture system using medium conditioned with endothelial cells, 

thus suggesting that irradiated endothelial cells are key players 

in the therapeutic effects of radiotherapy115. In addition, var-

ious flavonoids and non-flavonoid polyphenolic compounds 

from medicinal plants alleviate multidrug resistance in breast, 

prostate, lung, and colorectal cancer with survival benefits in 

patients, through their antioxidant capacity, the modulation 

of inflammatory responses, and the inactivation of oncogenes 

with the inhibition of survival, angiogenesis, proliferation, and 

metastasis118 (Table 1).

Some causes of controversies on the 
roles of stromal cells in cancer

Cancer cell lines

In numerous reports, it is not clear whether the pro-tumor-

igenic rather than anti-cancer role of MSCs is dictated by a 

cell line-specific event. In a coculture study with bladder 

cancer cells displaying stem cell-like properties (CD133+) 

and adipose- derived MSCs, the latter cells produced soluble 

mediators that: (i) increased the phosphorylation of mole-

cules involved in cancer progression and drug resistance, such 

as p70 S6K, ERK1/2, and AKT1/2/3 in CD133+ cells from 

5637 cell line; but also (ii) decreased the phosphorylation of 

those PI3K/Akt and MAPK signaling molecules in CD133+ 

cells from HB-CLS-1 cell line119. MSCs in fact induced pro- 

tumorigenic effects in the presence of 5637 bladder cancer cell 

line and anti-cancer effects in the presence of HB-CLS-1 blad-

der cancer cell line, and thus the effect of crosstalk between 

MSCs and bladder cancer cells remains unclear. Similarly, in 

a study assessing how breast cancer cells from different stages 

of the metastatic cascade convert MSCs into tumor-associated 

MSCs, only MDA-MB-231 breast cancer secretomes, but not 

MCF-7 cells and sublines isolated from bone, lung, and brain 

metastases, converted MSCs into tumor-associated MSCs in 

bioengineered 3D microenvironments120. Altogether, these 

findings suggest that MSCs from the tumor microenviron-

ment are pre-conditioned to mediate pro-tumorigenic effects 

on cancer cells, and that impeding this pre-conditioning or 

re-conditioning MSCs may warrant anti-cancer effects in the 

tumor microenvironment (Figure 1). 

In vitro vs. in vivo and MSC origin

Experimental evidence supports the idea that stromal cell 

effects and origin may explain the discrepancies amongst data 

from in vitro and in vivo studies. Quach and colleagues121 

reported that while the inhibition of the glypican-1 (GPC-1) 

Table 1 Methods proposed for reprogramming the tumor 
microenvironment

Cancer type/
model

  Methods   References

Breast cancer   Treatment of MSCs with 
eicosapentanoic acid

  106

  Encapsulation of MSCs with 
sodium alginate

  107

Prostate cancer   Extended passaging of CAFs   108

  Elimination of tumor 
immunosuppressive cells with 
chimeric protein IL2-R336A

  109

Lung cancer   MSCs loading with the 
photosensitizer MnO2@Ce6

  110

  MSCs loading with 
nanoparticles

  111

Hepatocellular 
carcinoma

  MSCs carrying an adenovirus   112

  Treatment of MSCs with 
melatonin

  113

Colon cancer   MSCs arming with a double 
fusion gene containing 
the herpes simplex virus 
truncated thymidine kinase 
and firefly luciferase

  114

Liver cancer   Irradiation of endothelial cells   115

Neuroblastoma   Autologous MSCs carrying an 
oncolytic adenovirus

  75

Myelodysplastic 
syndrome

  Treatment of MSCs with 
5-azacytidine

  116
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prostate cancer biomarker decreases cell growth and migra-

tion in vitro of the aggressive prostate cancer cell line PC-3, 

quite surprisingly it increases the PC-3 tumor size in NCr 

nude mice xenografts. Also surprisingly, it increases cancer cell 

proliferation and migration in aggressive prostate cancer cell 

line DU-145 cells, suggesting that GPC-1 accounts for among 

the factors that drive a cell line-dependent response to stro-

mal cells. In addition, in the same study, the decreased cell 

growth observed in GPC-1 knockdown PC-3 cells was rescued 

by coculturing the cells with MSCs and CAFs. Further, treat-

ment of these stromal cells with tumor-conditioned media 

from PC-3 cells transfected with GPC-1 short hairpin RNA 

(shRNA) increased the expression of ECM components, endo-

crine and paracrine biomolecules, and migration markers121. 

Moreover, despite in vivo observations suggesting the ability 

of this signaling pathway to induce drug resistance and influ-

ence the ability to form metastasis via induction of EMT in 

pancreatic cancer, the activation of insulin-like growth factor 

(IGF)/IGF-I receptor (IGF-IR) signaling by stromal cells failed 

to induce EMT in cultures with MiaPaCa-2, AsPC-1, Capan-2, 

BxPC-3, and Panc1 pancreatic cancer cell lines122.

Considering that MSCs promoted anti-cancer effects in 

most reports, as discussed in the Cancer-restraining CAFs 

section, surprisingly, treatment of MDA-MB-231 and MCF-7 

human breast cancer cells with medium containing extracellu-

lar vesicles promoted the in vitro proliferation and migration 

of cancer cells through ERK signaling123. We hypothesize that 

these effects may be due to differences in the origin of MSCs, 

as in this study human umbilical cord MSCs, and not BM or 

adipose-derived MSCs were used. As a further support of this 

hypothesis, a comparative study of subcutaneous and visceral 

adipose-derived MSCs revealed various functional similarities 

and differences, despite similar surface markers124. Notably, 

visceral MSCs secreted higher levels of inflammatory cytokines 

(IL-6, IL-8, and TNF-α) and had a more active sonic hedgehog 

pathway than subcutaneous MSCs. Fetal and adult lung MSCs 

possess lung-specific properties, unlike BM-MSCs22. However, 

a study profiling the transcriptomes of 361 single MSCs 

derived from two umbilical cords (UC-MSCs), harvested at 

different passages and stimulated with or without inflamma-

tory cytokines, revealed that UC-MSCs are a well-organized 

population with limited heterogeneity, as compared to other 

MSC types125.

Conclusions

The available data clearly support that stromal cells normally 

have anti-cancer effects, and that reprogramming by cancer 

cells in the tumor microenvironment induces their switch to 

pro-tumorigenic activities, thus suggesting that targeting the 

tumor microenvironment could be a promising therapeutic 

strategy in cancer. A growing number of reports suggest the 

possibility to reprogram stromal cells to maintain or revert 

back to anti-cancer effects. Interestingly, cancer- restraining 

stromal cells have been identified in the microenvironment, 

and a marker was reported. Future studies characterizing the 

origin of these cells may provide clues to how they can be 

exploited for anti-cancer therapy. The emerging data shed 

light on the origin of previous controversies on the roles of 

stromal cells in the tumor microenvironment. Notably, MSCs 

have varying effects on cancer cell lines of different ori-

gins, and MSCs from different origins have different effects 

Programming by tumorigenic factorsA

B

C

Mainly pro-tumorigenic
Immunosuppression

Cancer-restraining CAFs

Anti-cancer effects

In vitro vs. in vivo experiments
Cancer cell line differences Experimental models

Stromal cells’ origin

Tissue repair

MSCs slowing tumor progression

Celluar senescence
Cancer adaptive metabolic plasticity
Chronic low-grade inflammation

Stromal
cells

Therapeutic
reprogramming

Stromal
cells

Small populations with anti-cancer effects

Causes of controversies on stromal cells’ roles and potential in cancer:

+ Hypoxia and tumor stiffness
+ Adiposity, etc.

Tumor
microenvironment

Figure 1 Summary of pro-tumorigenic (A) and therapeutic potential (B) of mesenchymal stromal cells (MSCs) and causes of controversies 
(C). CAFs, cancer-associated fibroblasts.
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on cancer cell cocultures. On the other hand, the tumor 

microenvironment induces complex signals that affect how 

stromal and cancer cells respond to soluble factors in vitro 

and in vivo. These discrepancies should be taken into account 

in the design of future studies and interpretation of results.
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