407 research outputs found

    Leading Chiral Logarithms for Pion Form Factors to Arbitrary Number of Loops

    Full text link
    We develop the method of calculation of the leading chiral (infrared) logarithms to an arbitrary loop order for various form factors of Nambu-Goldstone bosons. The method is illustrated on example of scalar and vector form factors in massless 4D O(N+1)/O(N) sigma-model. The analytical properties of the form factors are derived. The leading chiral (infrared) logarithms are summed up in the large N limit.Comment: 5 page

    Soft spectator scattering in the nucleon form factors at large Q2Q^2 within the SCET approach

    Full text link
    The proton form factors at large momentum transfer are dominated by two contributions which are associated with the hard and soft rescattering respectively. Motivated by a very active experimental form factor program at intermediate values of momentum transfers, Q2515GeV2Q^{2}\sim 5-15 \text{GeV}^{2}, where an understanding in terms of only a hard rescattering mechanism cannot yet be expected, we investigate in this work the soft rescattering contribution using soft collinear effective theory (SCET). Within such description, the form factor is characterized, besides the hard scale Q2Q^2, by a semi-hard scale QΛQ \Lambda, which arises due to presence of soft spectators, with virtuality Λ2\Lambda^2 (Λ0.5\Lambda \sim 0.5 GeV), such that Q2QΛΛ2Q^{2}\gg Q\Lambda\gg \Lambda^{2}. We show that in this case a two-step factorization can be successfully carried out using the SCET approach. In a first step (SCETI_I), we perform the leading order matching of the QCD electromagnetic current onto the relevant SCETI_I operators and perform a resummation of large logarithms using renormalization group equations. We then discuss the further matching onto a SCETII_{II} framework, and propose the complete factorization formula for the Dirac form factor, accounting for both hard and soft contributions. We also present a qualitative discussion of the phenomenological consequences of this new framework.Comment: 33 pages, 19 figures; typos corrected, text improved. Version to appear in Phys.Rev.

    Hermes and the spin of the proton

    Get PDF
    HERMES is a second generation experiment to study the spin structure of the nucleon, in which measurements of the spin dependent properties of semi-inclusive deep-inelastic lepton scattering are emphasized. Data have been accumulated for semi-inclusive pion, kaon, and proton double-spin asymmetries, as well as for high-p_T hadron pairs, and single-spin azimuthal asymmetries for pion electroproduction and deep virtual Compton scattering. These results provide information on the flavor decomposition of the polarized quark distributions in the nucleon and a first glimpse of the gluon polarization, while the observation of the azimuthal asymmetries show promise for probing the tensor spin of the nucleon and isolating the total angular momentum carried by the quarks.Comment: LaTeX, 21 page

    The 63^{63}Ni(n,γ\gamma) cross section measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63^{63}Ni affects the abundances of other nuclei in its region, especially 63^{63}Cu and 64^{64}Zn. In order to determine the energy dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4π\pi BaF2_2 array DANCE. The (n,γ\gamma) cross section of 63^{63}Ni has been determined relative to the well known 197^{197}Au standard with uncertainties below 15%. Various 63^{63}Ni resonances have been identified based on the Q-value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ.Comment: 11 pages, 13 page

    Twist-3 contribution to the γγππ\gamma^*\gamma\to \pi\pi amplitude in the Wandzura-Wilczek approximation

    Full text link
    We have calculated the Wandzura-Wilczek contribution to the twist-3 part of γγ2π\gamma^*\gamma\to 2\pi amplitude. It describes interaction of the longitudinally polarized virtual photon with the real one, and it is suppressed by 1/Q, where Q2Q^2 is the virtuality of the γ\gamma^*, as compared to the twist-2 contribution. We have found that, in the Wandzura-Wilczek approximation, factorization applies to the twist-3 amplitude.Comment: 13 pages, 4 figure

    DVCS-Dissociation of the Deuteron and the EMC Effect

    Full text link
    The break-up of the deuteron during deeply-virtual Compton scattering, gamma* d --> gamma(*) n p, is explored. In the effective field theory describing nucleon dynamics at momenta below the pion mass, the EMC effect results from four-nucleon interactions with the twist-2 operators, appropriate for describing forward, and near-forward, matrix elements in the two-nucleon system. We point out that the break-up of the deuteron to low-energy final states during deeply-virtual Compton scattering is a process with which to explore strong-interaction physics closely related to that responsible for the EMC effect. The single-nucleon contribution to the break-up depends on the moments of the spin-dependent structure functions and contributions from local four-nucleon operators. Experimental deviations from the single-nucleon prediction would provide a probe of strong interactions complimentary to the EMC effect.Comment: 10 pages LaTeX, 2 eps figure

    The dual parametrization for gluon GPDs

    Full text link
    We consider the application of the dual parametrization for the case of gluon GPDs in the nucleon. This provides opportunities for the more flexible modeling unpolarized gluon GPDs in a nucleon which in particular contain the invaluable information on the fraction of nucleon spin carried by gluons. We perform the generalization of Abel transform tomography approach for the case of gluons. We also discuss the skewness effect in the framework of the dual parametrization. We strongly suggest to employ the fitting strategies based on the dual parametrization to extract the information on GPDs from the experimental data.Comment: 37 pages, 2 figure

    Angular distributions in hard exclusive production of pion pairs

    Full text link
    Using the leading order amplitudes of hard exclusive electroproduction of pion pairs we have analyzed the angular distribution of the two produced particles. At leading twist a pion pair can be produced only in an isovector or an isoscalar state. We show that certain components of the angular distribution only get contributions from the interference of the I=1 and the (much smaller) I=0 amplitude. Therefore our predictions prove to be a good probe of isospin zero pion pair production. We predict effects of a measurable size that could be observed at experiments like HERMES. We also discuss how hard exclusive pion pair production can provide us with new information on the effective chiral Lagrangian.Comment: 17 pages, version to appear in Phys. Rev.

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.
    corecore