6 research outputs found

    Vulnerability assessment models to drought : toward a conceptual framework

    Get PDF
    Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers' ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers' level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought

    Performance of Granular Activated Carbon to 2,4-Dichlorophenoxy Acetic Acid Aemoval from Aqueous Environments

    No full text
    Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: 2, 4-dichlorophenoxy acetic acid is a well-known herbicide which can be dangerous for  both human and animal health in different ways such as its presence in drinking water. This study aimed at Performance of granular activated carbon to 2-4-D removal from aqueous solution and assessing the relationship between COD and 2-4-D concentration Materials and Methods: This study is a lab-scale study. Firstly, different 2-4-D concentrations were prepared from Stock solution (1000 mg/L), and then their CODs were measured. Optimum pH for 2-4-D removal was determined and its absorption rate at different concentrations was measured. Results: Results showed a clear relationship between COD and 2-4-D concentration. On the other hand, COD removal increased as time elapsed, so that maximum removal 90% and 84% at initial 2-4-D concentrations of 50 and 100 mg/L were observed at contact time of 50 min respectively. Optimum pH for all concentrations was determined as 6. Conclusion: According to present study it can be concluded that activated carbon have be up to 90% of 2-4-D removal from water environment. In addition, a significant relationship was observed between COD and 2-4-D concentration, so that direct measurement of COD can be used instead of 2-4-D measurement. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;
    corecore