26 research outputs found

    Measurements of one-point statistics in 21-cm intensity maps via foreground avoidance strategy

    Get PDF
    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21-cm fluctuations are among the most directstatistical probes of the non-Gaussian nature ofstructure formation and evolution during re-ionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21-cm one-point statistics through a foreground avoidance strategy. Leveraging the characteristic wedge-shape of the foregrounds in k-space, we apply a wedge-cut filtre that removes the foreground contaminated modes from a mock data set based on the Hydrogen Epoch of Re-ionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with varying degrees of wedge-cutting over different frequency bandwidths and find that the centre of the band is the least susceptible to bias from wedge-cutting. Based on this finding, we introduce a rolling filtre method that allows reconstruction of an optimal wedge-cut 21-cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the rise in skewness and kurtosis near the end of re-ionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled

    Measurements of one-point statistics in 21 cm intensity maps via foreground avoidance strategy

    Get PDF
    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21 cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during reionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21 cm one-point statistics through a foreground avoidance strategy. Leveraging the well-known characteristic of foreground contamination in which it occupies a wedge-shape region in k-space, we apply a foreground wedge-cut filter that removes the contaminated modes from a mock data set based on the Hydrogen Epoch of Reionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with wedge-cutting over different frequency bandwidths and varying degrees of removal that correspond to different assumptions on the extent of the foreground sources on the sky and leakage from the Fourier Transform window function. We find that the centre of the band is the least biased from wedge-cutting while the edges of the band are unusable due to being highly down-weighted by the window function. Based on this finding, we introduce a rolling filter method that allows reconstruction of an optimal wedge-cut 21~cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the rise in skewness and kurtosis near the end of reionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.Comment: 12 pages, 8 figures, submitted to MNRA

    A Roadmap for Astrophysics and Cosmology with High-Redshift 21 cm Intensity Mapping

    Full text link
    In this white paper, we lay out a US roadmap for high-redshift 21 cm cosmology (30 < z < 6) in the 2020s. Beginning with the currently-funded HERA and MWA Phase II projects and advancing through the decade with a coordinated program of small-scale instrumentation, software, and analysis projects targeting technology development, this roadmap incorporates our current best understanding of the systematics confronting 21 cm cosmology into a plan for overcoming them, enabling next-generation, mid-scale 21 cm arrays to be proposed late in the decade. Submitted for consideration by the Astro2020 Decadal Survey Program Panel for Radio, Millimeter, and Submillimeter Observations from the Ground as a Medium-Sized Project.Comment: 10 pages (plus a cover page and references), 6 figures. Submitted as a APC White Paper for Astro202

    The Correlation Calibration of PAPER-64 data

    Get PDF
    Observation of redshifted 21-cm signal from the Epoch of Reionization (EoR) is challenging due to contamination from the bright foreground sources that exceed the signal by several orders of magnitude. The removal of this very high foreground relies on accurate calibration to keep the intrinsic property of the foreground with frequency. Commonly employed calibration techniques for these experiments are the sky model-based and the redundant baseline-based calibration approaches. However, the sky model-based and redundant baseline-based calibration methods could suffer from sky-modeling error and array redundancy imperfection issues, respectively. In this work, we introduce the hybrid correlation calibration ("CorrCal") scheme, which aims to bridge the gap between redundant and sky-based calibration by relaxing redundancy of the array and including sky information into the calibration formalisms. We demonstrate the slight improvement of power spectra, about −6%-6\% deviation at the bin right on the horizon limit of the foreground wedge-like structure, relative to the power spectra before the implementation of "CorrCal" to the data from the Precision Array for Probing the Epoch of Reionization (PAPER) experiment, which was otherwise calibrated using redundant baseline calibration. This small improvement of the foreground power spectra around the wedge limit could be suggestive of reduced spectral structure in the data after "CorrCal" calibration, which lays the foundation for future improvement of the calibration algorithm and implementation method

    Optimizing Sparse RFI Prediction using Deep Learning

    Get PDF
    Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known "ground truth" dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6×105\times 10^{5} HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and F2F_{2} score of 0.75 as applied to our HERA-67 observations.Comment: 11 pages, 7 figure

    Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h −1 Mpc−1 < k∥{k}_{\parallel } < 0.5 h −1 Mpc−1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field

    Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array

    Get PDF
    Characterizing the epoch of reionization (EoR) at z≳6z\gtrsim 6 via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the brightness temperature of the intergalactic medium (IGM). From this limited data, at z=7.7z=7.7 we infer "1σ1\sigma" upper limits on the IGM brightness temperature to be ≤316\le 316 "pseudo" mK at κ∥=0.33\kappa_\parallel=0.33 "pseudo" hh Mpc−1^{-1} (data-limited) and ≤1000\le 1000 "pseudo" mK at κ∥=0.875\kappa_\parallel=0.875 "pseudo" hh Mpc−1^{-1} (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at ≳106\gtrsim 10^6 dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD. Abstract may be slightly abridged compared to the actual manuscript due to length limitations on arXi
    corecore