11 research outputs found

    Biodegradation in soil effects on PLA/sisal and PHBV/sisal biocomposites

    Get PDF
    The use of bio-based composites like lignocellulosic fibres/polymer composites as an alternative materials are continuously increasing in several applications such as automobile manufacturing, packaging, construction or household and agricultural equipments. In order to warranty the durability on green biocomposites based on polymer matrixes like poly(hydroxy butyrate-co-valerate) (PHBV) and poly(lactide) (PLA), the previous knowledge about the influence of the ambient agents on their macromolecular properties is necessary. In this sense, biodegradation in soil normalised experiments are useful. In this work, two commercial PHBV and PLA were reinforced with sisal fibres at 10 %, 20% and 30% of weight, with the aid of maleic anhydride as coupling agent.the influence of the amount of sisal fiber and the effect of the coupling agent on the impact of the biodegradation in soil on the materiales, in terms of the variation of the physico-chemical properties of the biocomposites

    Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites

    Get PDF
    The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 C, since it represents the extreme degrading condition. The morphology and crystallinity of the biocomposites were evaluated by means of X-Ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The viscoelastic and thermal performance were assessed by means of dynamic mechanic thermal analysis (DMTA) and thermogravimetry (TGA). The presence of sisal generally diminished the thermal stability of the biocomposites, which was mitigated by the addition of the coupling agent. After composite preparation, the effectiveness of the sisal fibre was improved by the crystallisation of PLA around sisal, which increased the storage modulus and reduced the dampening factor. The presence of the coupling agent strengthened this effect. After hydrothermal ageing, crystallisation was promoted in all biocomposites therefore showing more fragile behaviour evidencing pores and cracks. However, the addition of coupling agent in the formulation of biocomposites contributed in all cases to minimise the effects of hydrothermal ageing

    Water absorption and hydrothermal performance of PHBV/sisal biocomposites

    Get PDF
    The performance of biocomposites of poly(hydroxybutyrate-co-valerate) (PHBV) and sisal fibre subjected to hydrothermal tests at different temperatures above the glass transition of PHBV (TH = 26, 36 and 46 °C) was evaluated in this study. The influences of both the fibre content and presence of coupling agent were focused. The water absorption capability and water diffusion rate were considered for a statistical factorial analysis. Afterwards, the physico-chemical properties of water-saturated biocomposites were assessed by Fourier-Transform Infrared Analysis, Size Exclusion Chromatography, Differential Scanning Calorimetry and Scanning Electron Microscopy. It was found that the water diffusion rate increased with both temperature and percentage of fibre, whereas the amount of absorbed water was only influenced by fibre content. The use of coupling agent was only relevant at the initial stages of the hydrothermal test, giving an increase in the diffusion rate. Although the chemical structure and thermal properties of water-saturated biocomposites remained practically intact, the physical performance was considerably affected, due to the swelling of fibres, which internally blew-up the PHBV matrix, provoking cracks and fibre detachment

    Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites

    Get PDF
    The decomposition behaviours of composites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and sisal were assessed in terms of thermal stability and decomposition kinetics, under inert and oxidative conditions, by means of multi-rate linear non-isothermal thermogravimetric experiments. A statistical design of experiments was applied to study the influence of the addition of sisal (0-10-20-30%wt), the presence coupling agent (Yes/No) and the applied conditions of work (inert or oxidative). An improvement of the thermal and thermo-oxidative stability of PHBV with the addition of sisal was observed for all cases. An accurate methodology based on iso-conversional methods was applied to simulate the potential of thermal recovery technologies, such as pyrolysis and controlled combustion, to use these biocomposites after the end of their service life. The mathematical descriptions of both thermo-chemical reactions were helpful in the evaluation of the eventual optimal operational conditions to carry out a suitable energetic valorisation. A minimum of 240°C and 137 kJ/mol of activation energy in inert conditions and 236°C and 118 kJ/mol in oxidative conditions ensured the feasibility of the reactions regardless the composition of the PHBV/sisal biocomposites, which may ease the operability of further energy valorisation with the aim to turn biowaste into new fuels

    Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario

    Get PDF
    The eco-design considers the factors to prepare biocomposites under an end-of-life scenario. PLA/sisal biocomposites were obtained from amorphous polylactide and sisal loadings of 10, 20 and 30 wt% with and without coupling agent, and subjected to biodegradation in soil according to standard ISO846. Massloss, differential scanning calorimetry and size-exclusion chromatography were used for monitoring biodegradation. A statistical factorial analysis based on the molar mass Mn and crystallinity degree XC pointed out the relevance and interaction of amount of fibre and use of coupling agent with the time of burial in soil. During the preparation of biocomposites, chain scission provoked a similar reduction of Mn for coupled and non-coupled biocomposites. The amount of fibre was relevant for the increase of XC due to the increase of nucleation sites. The coupling agent accelerated the evolution of both factors: reduction of Mn and the consequent increase of XC, mainly during biodegradation in soil. Both factors should be balanced to facilitate microbial assimilation of polymer segments, since bacterial digestion is enhanced by chain scission but blocked by the promotion of crystalline fractions

    Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance

    Get PDF
    An accelerated hydrothermal degrading test was designed in order to analyse the synergic effect of water and temperature on PLA/sisal biocomposites with and without coupling agent. As well, the physicochemical properties of biocomposites were monitored along the hydrothermal test by means of Scanning Electron Microscopy, Size Exclusion Chromatography and Differential Scanning Calorimetry. The addition of fibre induced higher water absorption capability and promoted physical degradation, as observed in the surface topography. During the processing of biocomposites and throughout the hydrothermal ageing, a reduction of molecular weight due to chain scission was found. As a consequence, a faster formation of crystalline domains in the PLA matrix occurred the higher the amount of fibre was, which acted as a nucleating agent. Higher crystallinity was considered as a barrier against the advance of penetrant and a reduction in the diffusion coefficient was shown. The addition of coupling agent presented a different influence depending on the composition, showing an inflection point around 20% of sisal fibre

    Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites

    Get PDF
    The dielectric properties of virgin polylactide (PLA) and its reinforced composites with different weight amounts of sisal fibres were assessed at broad temperature (from −130 °C to 130 °C) and frequency ranges (from 10-2 -10 7 Hz), before and after being subjected to accelerated hydrothermal ageing. The synergetic effects of both the loading of sisal and hydrothermal ageing were analysed by means of dielectric relaxation spectra. The relaxation time functions were evaluated by the Havriliak-Negami model, substracting the ohmic contribution of conductivity. The intramolecular and intermolecular relaxations were respectively analysed by means of Arrhenius and Vogel-Fulcher-Tammann-Hesse thermal activation models. The addition of fibre increased the number of hydrogen bonds, which incremented the dielectric permittivity and mainly hindered the non-cooperative relaxations of the biocomposites by increasing the activation energy. Hydrothermal ageing enhanced the formation of the crystalline phase at the so-called transcrystalline region along sisal. This fact hindered the movement of the amorphous PLA fraction, and consequently decreased the dielectric permittivity and increased the dynamic fragility

    Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites

    No full text
    The thermal stability and decomposition kinetics of PLA/sisal biocomposites was discussed to evaluate the suitability of their use in energy recovery processes such as pyrolysis and combustion. The influence of the addition of sisal up to 30%wt, the presence of coupling agent, and the atmosphere of operation, i.e. inert or oxidative was discussed by means of multi-rate linear non-isothermal thermogravimetric experiments. All biocomposites showed a mean high heating value of 15 MJ/kg indicating their suitability for energy recovery processes. The thermal requirements of PLA/sisal decomposition were assessed in terms of onset decomposition temperature and apparent activation energy. A minimum of 240 °C and 174 kJ mol−1 in inert environment and 225 °C and 190 kJ mol−1 in oxidative environment ensured the feasibility of the reactions regardless the composition of the PLA/sisal biocomposites. The atmosphere of work lead to a greater amount of residue in case of pyrolysis reactions that would need further treatment whereas an oxidative atmosphere resulted in nearly zero final waste stream. The similar kinetics obtained for all samples regardless the amount of sisal or use of coupling agent eases the operability of energy facilities aimed of turning these biowastes into new fuels
    corecore