37 research outputs found

    Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells

    Get PDF
    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-a, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naıšve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3+ pan-T cells resulted in increased secretion of IFN-c and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL- 4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs’ NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins

    Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells

    Get PDF
    Inflammation is associated with oxidative stress and characterized by elevated levels of damage-associated molecular pattern (DAMP) molecules released from injured or even living cells into the surrounding microenvironment. One of these endogenous danger signals is the extracellular mitochondrial DNA (mtDNA) containing evolutionary conserved unmethylated CpG repeats. Increased levels of reactive oxygen species (ROS) generated by recruited inflammatory cells modify mtDNA oxidatively resulting primarily in accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) lesions. In this study, we examined the impact of native and oxidatively modified mtDNAs on the phenotypic and functional properties of plasmacytoid dendritic cells (pDCs), which possess a fundamental role in the regulation of inflammation and T cell immunity. Treatment of human primary pDCs with native mtDNA up-regulated the expression of a co-stimulatory molecule (CD86), a specific maturation marker (CD83), and a main antigen-presenting molecule (HLA-DQ) on the cell surface, as well as increased TNF-α and IL-8 production from the cells. These effects were more apparent when pDCs were exposed to oxidatively modified mtDNA. Neither native nor oxidized mtDNA molecules were able to induce interferon (IFN)-α secretion from pDCs unless they formed a complex with human cathelicidin LL-37, an antimicrobial peptide. Interestingly, simultaneous administration of a Toll-like receptor (TLR)9 antagonist abrogated the effects of both native and oxidized mtDNAs on human pDCs. In a murine model, oxidized mtDNA also proved a more potent activator of pDCs compared to the native form, except for induction of IFN-α production. Collectively, we demonstrate here for the first time that elevated levels of 8-oxoG bases in the extracellular mtDNA induced by oxidative stress increase the immunostimulatory capacity of mtDNA on pDCs

    Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation

    Get PDF
    Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid induction of glycolysis; however, the metabolic requirements of retinoic-acid inducible gene I (RIG-I)-like receptor (RLR) activation have not defined either in conventional DCs (cDCs) or in plasmacytoid DCs (pDCs) that are the major producers of type I interferons (IFN) upon viral infections. To sense viruses and trigger an early type I IFN response, pDCs rely on endosomal TLRs, whereas cDCs employ cytosolic RIG-I, which is constitutively present in their cytoplasm. We previously found that RIG-I is upregulated in pDCs upon endosomal TLR activation and contributes to the late phase of type I IFN responses. Here we report that TLR9-driven activation of human pDCs leads to a metabolic transition to glycolysis supporting the production of type I IFNs, whereas RIG-I-mediated antiviral responses of pDCs do not require glycolysis and rather rely on oxidative phosphorylation (OXPHOS) activity. In particular, TLR9-activated pDCs show increased extracellular acidification rate (ECAR), lactate production, and upregulation of key glycolytic genes indicating an elevation in glycolytic flux. Furthermore, administration of 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, significantly impairs the TLR9-induced secretion of type I IFNs by human pDCs. In contrast, RIG-I stimulation of pDCs does not result in any alterations of ECAR, and type I IFN production is not inhibited but rather promoted by 2-DG treatment. Moreover, pDCs activated via TLR9 but not RIG-I in the presence of 2-DG are impaired in their capacity to prime allogeneic naĂŻve CD8+ T cell proliferation. Interestingly, human monocyte-derived DCs (moDC) triggered via RIG-I show a commitment to glycolysis to promote type I IFN production and T cell priming in contrast to pDCs. Our findings reveal for the first time, that pDCs display a unique metabolic profile; TLR9-driven but not RIG-I-mediated activation of pDCs requires glycolytic reprogramming. Nevertheless, the metabolic signature of RIG-I-stimulated moDCs is characterized by glycolysis suggesting that RIG-I-induced metabolic alterations are rather cell type-specific and not receptor-specific

    Interactions Between the NLRP3-Dependent IL-1ÎČ and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells

    Get PDF
    Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant

    Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells

    No full text
    Serotonin is a monoamine neurotransmitter that signals through a wide array of receptors (5-HT1–7) many of which are also involved in immune processes. Dendritic cells (DCs) are crucial players in immune defense by bridging innate and adaptive immune responses via their vast repertoire of pattern recognition receptors and antigen-presenting capability. Although serotonin is known to influence immunity at many levels, cell type-specific expression and function of its receptors remains poorly understood. Here we aimed to study 5-HT1–7 expression and function in CD1a− and CD1a+ human monocyte-derived DCs (moDCs). We found that the 5-HT2B receptor-subtype is solely expressed by the inflammatory CD1a+ moDC subset. Specific 5-HT2B activation potently inhibited TLR2, TLR3, and TLR7/8-induced proinflammatory cytokine and chemokine (TNF-α, IL-6, IL-8, IP-10, IL-12) but not type I interferon-ÎČ responses. 5-HT2B agonism also interfered with the polarization of CD1a+ moDC-primed CD4+ T cells towards inflammatory Th1 and Th17 effector lymphocytes. Here we report the subset-specific expression and immunomodulatory function of 5-HT2B in human moDCs. Our results expand the biological role of 5-HT2B which may act not only as a neurotransmitter receptor, but also as an important modulator of both innate and adaptive immune responses
    corecore