64 research outputs found

    Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    Get PDF
    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation

    The Streptococcus sanguinis Competence Regulon Is Not Required for Infective Endocarditis Virulence in a Rabbit Model

    Get PDF
    Streptococcus sanguinis is an important component of dental plaque and a leading cause of infective endocarditis. Genetic competence in S. sanguinis requires a quorum sensing system encoded by the early comCDE genes, as well as late genes controlled by the alternative sigma factor, ComX. Previous studies of Streptococcus pneumoniae and Streptococcus mutans have identified functions for the >100-gene com regulon in addition to DNA uptake, including virulence. We investigated this possibility in S. sanguinis. Strains deleted for the comCDE or comX master regulatory genes were created. Using a rabbit endocarditis model in conjunction with a variety of virulence assays, we determined that both mutants possessed infectivity equivalent to that of a virulent control strain, and that measures of disease were similar in rabbits infected with each strain. These results suggest that the com regulon is not required for S. sanguinis infective endocarditis virulence in this model. We propose that the different roles of the S. sanguinis, S. pneumoniae, and S. mutans com regulons in virulence can be understood in relation to the pathogenic mechanisms employed by each species

    Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis

    Get PDF
    Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259–6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (FeIII2-Y•) in vitro, whereas assembly of a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor requires NrdI, and MnIII2-Y• is more active than FeIII2-Y• with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJgene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that MnIII2-Y•-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets

    Heterologous expression of Streptococcus mutans cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOIn S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors811829FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2014/07231-0; 2013/25080-7308644/2011-

    Vaccination with FimA from Streptococcus parasanguis Protects Rats from Endocarditis Caused by Other Viridans Streptococci

    No full text
    The FimA protein of Streptococcus parasanguis is a virulence factor in the rat model of endocarditis, and immunization with FimA protects rats against homologous bacterial challenge. Because FimA-like proteins are widespread among the oral streptococci, the leading cause of native valve endocarditis, we evaluated the ability of this vaccinogen to protect rats when challenged by other streptococcal species. Here we report that FimA vaccination produced antibodies that cross-reacted with and protected against challenge by the oral streptococci S. mitis, S. mutans, and S. salivarius. FimA thus has promise as a vaccinogen to control infective endocarditis caused by oral streptococci

    Genetic Characterization of a Streptococcus mutans LraI Family Operon and Role in Virulence

    No full text
    Proteins belonging to the LraI (for “lipoprotein receptor antigen”) family function as adhesins in several streptococci, as a virulence factor for endocarditis in at least one of these species, and potentially as metal transporters in many bacteria. We have identified and characterized the chromosomal locus containing the LraI family gene (designated sloC) from Streptococcus mutans, an agent of dental caries and endocarditis in humans. Northern blot analysis indicated that sloC is cotranscribed with three other genes. As with other LraI operons, the sloA and sloB genes apparently encode components of an ATP-binding cassette transport system. The product of the fourth gene, sloR, has homology to the metal-dependent regulator from Corynebacterium diphtheriae, DtxR. A potential binding site for SloR was identified upstream from the sloABCR operon and was conserved upstream from LraI operons in several other streptococci. Potential SloR homologs were identified in the unfinished genomic sequences from two of these, S. pneumoniae and S. pyogenes. Mutagenesis of sloC in S. mutans resulted in apparent loss of expression of the entire operon as assessed by Northern blot analysis. The sloC mutant was indistinguishable from its wild-type parent in a gnotobiotic rat model of caries but was significantly less virulent in a rat model of endocarditis. Virulence for endocarditis was restored by correction of the sloC mutation but not by provision of the sloC gene in trans, suggesting that virulence requires the expression of other genes in the sloC operon

    Peracetic Acid: A Practical Alternative to Formalin for Disinfection of Extracted Human Teeth

    No full text
    Extracted human teeth provide the closest approximation to teeth in situ and play important roles in dental education and materials research. Since extracted teeth are potentially infectious, the Centers for Disease Control recommend their sterilization by autoclaving or disinfection by formalin immersion to ensure safe handling. However, autoclaving is not recommended for teeth with amalgam fillings and formalin is hazardous. The goal of the present study was to investigate the potential of peracetic acid (PA) as an alternative method to achieve reliable disinfection of freshly extracted teeth. A total of 80 extracted teeth were collected for this study. Whole teeth were incubated in one of four solutions for defined periods of time: sterile water (2 weeks), formalin (2 weeks), PA 1000 ppm (2 weeks), and PA 2000 ppm (1 week). After sectioning, the crown and root fragments were transferred into separate tubes containing brain–heart infusion broth and incubated at 37 °C under anaerobic conditions for 72 h. Absence of broth turbidity was used to assess effectiveness of disinfection. No turbidity was observed in any of the formalin-treated or peracetic acid-treated samples, signifying complete disinfection. Our results indicate that PA can effectively disinfect extracted human teeth, providing a reliable alternative to formalin and autoclaving

    The sloABCR Operon of Streptococcus mutans Encodes an Mn and Fe Transport System Required for Endocarditis Virulence and Its Mn-Dependent Repressor

    No full text
    Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 μM supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 μM supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis

    Examination of <i>com</i> mutants by competitive index analysis in a rabbit model of endocarditis.

    No full text
    <p>Each symbol represents data from a single rabbit. (A) CI values from rabbits inoculated with 10<sup>8</sup> CFU. Median CI values from the combined results of two experiments are indicated in parentheses and by horizontal bars. The CI value for each rabbit was calculated as the ratio of mutant/JFP36 in the vegetation homogenate divided by the mutant/JFP36 ratio in the inoculum. Neither median value was significantly different from 1.0. (B) Recovery of competing strains from infected vegetations at multiple inoculum levels. Each pair of connected circles indicates recovery of JFP36 (filled circles) and JFP49 (open circles) from the same rabbit. Data for the 10<sup>8</sup> inoculum are from experiments depicted in panel A. Dashed line, limit of detection.</p
    corecore