293 research outputs found
Recommended from our members
Impacts of Exhaust Transfer System Contamination on Particulate Matter Measurements
Recommended from our members
Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal
A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs
Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective
Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH) species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2 − (m/z—46) in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species) are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate) in the single particle spectra. These changes have potential implications for the health effect impacts of particulate emissions from biofuel blends
Recommended from our members
Fixed-bed gasification research using US coals. Volume 12. Gasification of Absaloka/Robinson subbituminous coal
A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial particpants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the twelfth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. this specific reports describes the gasification of Absaloka/Robinson subbituminous coal. This volume covers the test period June 18, 1984 to June 30, 1984. 4 refs., 20 figs., 18 tabs
Recommended from our members
Mechanistic studies of SC-1 particle removal and post piranha rinsing
SC-1 (NH{sub 4}OH/H{sub 2}O{sub 2}/H{sub 2}O) and piranha (H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}) cleans have been used for many years to remove particulate and organic contamination. Although the SC-1 clean, often used with applied megasonic power, is known to be highly effective for particle removal, the removal mechanism remains unclear. For the removal of heavy organic contamination, the piranha cleaning chemistry is an effective process; however, post-piranha residue adheres tenaciously to the wafer surface, causing a particle growth phenomenon. A series of experiments have been performed to help understand the interaction of these processes with silicon surfaces
Cause-Specific Mortality in the Unionized U.S. Trucking Industry
Background: Occupational and population-based studies have related exposure to fine particulate air pollution, and specifically particulate matter from vehicle exhausts, to cardiovascular diseases and lung cancer. Objectives: We have established a large retrospective cohort to assess mortality in the unionized U.S. trucking industry. To provide insight into mortality patterns associated with job-specific exposures, we examined rates of cause-specific mortality compared with the general U.S. population. Methods: We used records from four national trucking companies to identify 54,319 male employees employed in 1985. Cause-specific mortality was assessed through 2000 using the National Death Index. Expected numbers of all and cause-specific deaths were calculated stratifying by race, 10-year age group, and calendar period using U.S. national reference rates. Standardized mortality ratios (SMRs) and 95% confidence intervals (CIs) were calculated for the entire cohort and by job title. Results: As expected in a working population, we found a deficit in overall and all-cancer mortality, likely due to the healthy worker effect. In contrast, compared with the general U.S. population, we observed elevated rates for lung cancer, ischemic heart disease, and transport-related accidents. Lung cancer rates were elevated among all drivers (SMR = 1.10; 95% CI, 1.02–1.19) and dockworkers (SMR = 1.10; 95% CI, 0.94–1.30); ischemic heart disease was also elevated among these groups of workers [drivers, SMR = 1.49 (95% CI, 1.40–1.59); dockworkers, SMR = 1.32 (95% CI, 1.15–1.52)], as well as among shop workers (SMR = 1.34; 95% CI, 1.05–1.72). Conclusions: In this detailed assessment of specific job categories in the U.S. trucking industry, we found an excess of mortality due to lung cancer and ischemic heart disease, particularly among drivers
Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results
- …