36 research outputs found

    A Unique Feature of the Asian Summer Monsoon Response to Global Warming: The Role of Different Land–Sea Thermal Contrast Change between the Lower and Upper Troposphere

    Get PDF
    Recent studies indicate that the view of a general weakening of the monsoon circulation in a warmer climate cannot be simply applied in the Asian monsoon regions. To understand the Asian summer monsoon response to global warming, idealized multi-model experiments are analyzed. In the coupled model response to increased CO2, monsoon westerlies in the lower troposphere are shifted poleward and slightly strengthened over land including South Asia and East Asia, while the tropical easterly jet in the upper troposphere are broadly weakened. The different circulation responses between the lower and upper troposphere is associated with vertically opposite changes in the meridional temperature gradient (MTG) between the Eurasian continent and the tropical Indian Ocean, with a strengthening (weakening) in the lower (upper) troposphere. Atmospheric model experiments to separate the effects of CO2 radiative forcing and sea surface temperature warming reveal that the strengthened MTG in the lower troposphere is explained by the CO2 forcing. On a global perspective, CO2-induced enhancement of the land–sea thermal contrast and resultant circulation changes are the most influential in the South Asian monsoon. This study emphasizes an important role of the land warming on the Asian monsoon response to global warming

    Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon

    Get PDF
    Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect
    corecore