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Synopsis 
  To simulate the time-dependent deformation of the rock, we propose herein a numerical creep model. The 
model can evaluate consistently from immediately after loading up to collapse considering the confinement 
effect. In this paper, firstly, a rheological relaxation model consisting of spring and damper components is 
explained to rock under a constant compressive stress and also under a constant strain rate are simulated 
using the proposed model. As a result, the obtained time history of strain rate under the constant stress, and 
also the relation between stress and strain including strain softening behavior under the constant rate are 
fairly agreed with the test’s results. 
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1. Introduction 
Under the swelling rock, there is sometimes increasing of ground deformations around the tunnel with 

time though while the tunnel is not under excavation. And it often make difficulty to continue tunnel 
excavation, so cause the cost up, and delay the schedule For radioactive waste disposal tunnel, long-term 
evaluation of deformation is needed for performance assessment because it is concerned that the creep 
phenomenon continues. 

It is known that creep deformation of rock specimen under tri-axial compression test with constant 
stress which called “creep test” hereafter, shows three phases of their states. Firstly, strain rate decrease by 
degrees from fast to slow. Next, the slow strain rate condition continues. Finally, strain rate increase rapidly 
and collapse. Each of these states is called primary creep, secondary creep, and, tertiary creep, respectively. 

By contrast, under tri-axial compression test with constant strain rate, which called “loading test” 
hereafter, axial stress of specimen decrease beyond its peak stress to residual stress, which is called strain 
softening. 

As the numerical models that can evaluate both the creep deformation and strain softening behavior, 
there are the elasto-viscoplastic model proposed by Adachi and Oka1), and, the model that varies the 
compliance depending upon time duration and current stress proposed by Okubo and Fukui et al2). 

For the model by Adachi and Oka1), materials parameters have to be modified depend on confined 
pressure to simulate the tri-axial tests. To make simulation easy, it is desirable to use same parameters 
through the analysis if the stress changes even in analysis step. Considering the confinement effects easily, 
Azuma and Ohtsuki et al.3),4) modified the Adachi-Oka model by adding the new eight model parameters. 
While, in Okubo’s model, the confinement effect is not considered. Furthermore, for the model, the 
determination of the model parameters using creep tests results is difficult when evaluation of primary to 
tertiary creep deformation needed. 
 In this study, the numerical model introducing a non-dimensional parameter s which represents the 

degree of creep development. The features of the model are easiness of estimating the model parameters 
because the numbers of parameters are not many. It can evaluate the effect of compression pressure based on 
Mohr – Coulomb criteria. At first, the numerical model is formulated, and the rheological relaxation model 
consisting of spring and damper is explained. Next, the model is installed into a finite difference method 
framework. Then, calculations of creep test and loading test are carried out about the existing tests data using 
one element model. By comparison between the results of numerical analysis and tri-axial compression test, 
applicability of the model is discussed. 

 
 
 
 
 
 
 

 

*    Student, Doctor Course of Department of Civil Engineering (Obayashi Corporation) 
**   Obayashi Corporation  
***  Associate Professor, Department of Civil Engineering, Osaka City University 
**** Professor, Division of System Science, Nagasaki University

－ 21 －



 

2. Creep model 
(1) Introduce of non-dimensional parameter s 

The non- dimensional important parameter s indicates the degree of creep development. It is assumed, 
herein, that the value of s increases with repeating of many stop and forward sequences as shown in Fig.1. As 
shown in the figure, the number of repetition is to be ds･n within an interval ds, so the increment value of s 
with the repetition is 1/n. Introducing the stationary time f for the stop sequence dependent upon current 
stress state, moreover, increasing rate of s can be described as eq. (1). It is noted that in Fig. 1, the duration 
for the forward sequences is to be zero, and it for the stop is to be the sum of the time f. Strain rate, so called 
creep strain is proportional to the increasing rate of s to be described later in detail. 

 
Fig.1 Concept of increasing s. 
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n� (1)

The parameter n is that means density of the stop sequence duration in unit interval s. It is assumed that 
the parameter n varies depending on increments of s, and the function of stopping density n=g’(s) is defined 
by eq. (2), which is never decrease. 
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Here, bn and av are material constants, these called as variance and mean, respectively, as follows. 
Parameter α1 is the maximum value of g’(s), and π is circular constant. It is assumed, furthermore, that the 
stationary time f is the function of stress p, so called f’(p). Thus, increasing rate of s (after, ��) is described by 
eq. (3) based on eq. (1) and (2). Now, stress p is defined as the distance from coordinate of principal stress to 
hydrostatic axis in three-dimensional principal stress space as shown in Fig.2, which is described as eq. (4). 
Here, J2 in eq. (4) is second invariant of deviatoric stress, which is as eq. (5), δij in eq. (6) is Kronecker’s 
delta. The increasing concept of s is shown in Fig.3 with consideration of stopping density. For creep test’s 
condition, f ’(p) is constant so that every stationary durations of stop sequences is same. 
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Fig.2 Stress p to increases s. 

 
Fig.3 Concept of s increase with consider of stopping density. 

 

 
Fig.4 An example of stopping density function. 

 
The concept of this model is based on the assumption as follows: In the case of unconfined material, 

contact and disconnections will occur between grains, while, in case of rock, the micro cracks will develop 
and penetrate. At every time of both of the events occurs, the increase of parameter s expressing creep 
development stops each time. Afterward, the parameter goes forward until next event occurs. For example, at 
beginning stage of loading under low strain condition, almost grains do not contact each other, or almost 
micro cracks do not develop so that the number of stopping is small. Subsequently, when the loading stage 
proceeds, the number increases, because the both events occur evidently. Consequently, approaching at final 
stage, the number decreases owing to the gradual termination of the both events. 

Furthermore, another assumption is introduced here as follows: strain increment with each event is 
proportional to the deviatoric stress p. It is based on that the event under high stress condition causes 
considerable large slips or crack extensions, so the strain increment becomes also larger than under low 
stress condition. Now, consider creep tests, we set parameters α1=ft(p)=1.  curves are obtained as shown in 
Fig.5 and Fig.7 as numerical solutions for eq. (3). Moreover, the functions of stopping density are as shown 
in Fig.6 and 8. The s values at  minimum in Fig.5 and Fig.7 correspond to the s values at maximum 
stopping density in Fig.6 and 8. 
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Fig.5 Time history of  with various variances: bn. 

 
Fig.6 Function of stopping density with various variances: bn. 

 

 
Fig.7 Time history of  with various means: av. 
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Fig.8 Function of stopping density with various means: av. 

 
From these dual logarithmic figures; Figs. 5 and 7, it can be found that, with same mean, the times when 

�� is minimum become later with variance increase. While, as the same manner, with same variance, the 
times when �� is minimum are similar with variable mean. Inclined straight line lengths before the time of 
minimum �� become longer with the mean increase, and become shorter with mean decreasing. Creep strain 
rate curve calculated by the creep model is similarity shape to Fig.5 or 7. From these figures, the gradient of 
the length are similar and the value is about 0.9, even though mean and variances are varied. To vary the 
gradient, parameter n has to be added into stopping density function as eq. (8). With smaller n, the gradient 
become smaller and curvature near the time when minimum �� occur become larger. With large n, the 
gradient become larger and curvature become smaller. The distribution of stopping density is shown by 
Fig.10. 
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Fig.9 Time history of �� (variation of n, at av=1 and bn=0.1). 
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Fig.10 Function of stopping density (variation of n at av=1 and bn=0.1). 

 
Because, many reports about creep tests of rock show that the gradients of straight intervals are near the 

value 0.9, hereafter, we regard n=1. Next, the function of stopping time is assumed as eq. (9) according to the 
Arrhenius equation, which rapidly decrease with the intensity of invariant stress p became larger than that of 
h relevant to shear strength. Parameter h in eq. (9) is obtained from eq. (10) based upon the Mohr-Coulomb 
criteria. 

 ����� � ��exp���� � ��� (9)
 � � � � ������ (10)

 Parameters of α2 and q define the relation between stopping time and p. Furthermore, parameters of c and 
φ define the strength depend on hydrostatic pressure σm. By changing of eq. (2) and (9) to eq. (11) and (12), 
eq. (14) is obtained from eq. (3). The parameter that has to be defined is α in eq. (14). 
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(2) Calculation of deviatoric stress p 
  To install the proposed creep model into a finite difference method framework, FDM, variation of stress 
due to relaxation is calculated in each loading step previously. By using the stress modifying process 
additionally, residual force is calculated firstly. Subsequently, after a current incremental stage is convergent, 
new stress and strain are calculated with the residual force that assumed as load in the FDM. Using obtained 
residual force, next step to convergence is also done.  Finally, next loading step with relaxation calculation 
is done. 

Now, consider a rheological model with spring and damper as shown in Fig.11. The normal force of 
spring is assumed equal to p shown in Fig.2. It’s both ends of the model do not move in process of relaxation 
calculation. With increments of time step in each loading step, displacement of damper increase and then the 
force of spring p become smaller. At this process, strain does not change. Next loading step, increment load 
is added onto spring force, relaxation calculation is repeated again. 
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Fig.11 Rheological model 

 
As shown in Fig.11, the displacement of damper is assumed as s indicating degree of the creep 

development. Being the increment of creep strain by the event of stop and forward sequences as shown in 
Fig.1 proportional to stress, spring constant is defined as eq. (15). When the spring constant is proportional to 
stress, relaxation rate becomes faster owing to large stress, and become slower owing to small stress. As the 
result, the creep strain obtained from convergence calculations satisfies the proportional relation to product 
of stress p and s. Parameter k’ is material constant. 

 � � ��� (15)

The flowchart of calculation of relaxation and decreasing of p with time step involved in loading step is 
shown in Fig.12. The creep strain in Fig.12 is 0.The parameter r in Fig.12 is the stress that increases with 
creep development to be explained later. It is also assumed that p does not become smaller than r. 

 

 
Fig.12 Flowchart of relaxation calculation. 

 
 (3) Defining of strength parameter r 

The strength parameter r in Fig.12 is to be increases with the accumulated events number as shown in Fig. 
1. Thus, r becomes residual strength that is defined by Mohr-Coulomb criteria in eq. (16). Strength parameter 
r is finally defined by eq. (17). 

 �� � �� � ��tan���� (16)
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Where, parameters cr and φr are cohesion and friction angle at residual stress state, respectively, and σm is 
hydrostatic pressure, erf is error function. 

 
(4) Modifying method of stress using p 

Amount of decrease in spring force p is put as dp. Modified spring force is put as p’ (= p – dp), and, thus 
stress calculated from p’ is updated as σij’. As shown in Fig.13, the direction of stress shift by modifying in 
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principal stress space is normal according to the well-known von Mises’s yield surface. In this case, 
hydrostatic pressure does not change by modifying of stress. As shown in the figure, at point B, the σi is 
principal stress before modify, point A is hydrostatic pressure σm. Point C is principal stress after modifying, 
and C rides on line A-B. Stress si is deviatoric principal stress before modify, si = σi − σm. From figure, 
deviatoric principal stress after modify si’ that is described by eq. (18) is same with vector AC. The 
derivation method of modify the principal stress from point B to C is discussed as follows: 

 

 
Fig.13 Modify of principal stress 

 ��� � �1 � ���� (18)

Deviatoric principal stress si is defined by eq. (19). Parameter of J3 is third invariant of deviatoric stress that 
is defined by eq. (20). 

 ��� � ���� � �� � � (19)
 �� �

1
3 ������ (20)

Deviatoric stress after modifying is put sij’ as eq. (21). 

 s��� � �1 � ����� (21)

Second and third stress invariants after modifying of J2’ and J3’ are defined by eq. (22) using invariant 
stress before modifying. 
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From eq. (22) and (23), stress invariants before modifying are defined as eq. (24) and (25). 
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By substitution of eq. (24) and (25) into eq. (18) and multiplying by (1-α)3, next equation is obtained. 
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Comparing with eq. (19) and eq. (26), it is found that the stress si’ defined in eq. (18) is same as deviatoric 
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principal stress of deviatoric stress sij after modifying. So the hydrostatic pressure σm’ after modifying is 
equal to hydrostatic pressure σm before modifying eq. (27) is given from eq. (21). 

 ���� � ������ � ���� � ����� � �� � ������ � ������ (27)

Stress σij’ after modifying is given as eq. (28) from eq. (27). Parameter α is given by eq. (29) that is derived 
from eq. (24). 

 ��� � �� � ��� � ��� 
 ��� � �� � ��� � ��� 

 ��� � �� � ��� � ��� 
 ���� � �� � ����� 

 ���� � �� � ����� 

 ���� � �� � �� (28)
 

� � � � ���
�

�� (29)

 If we consider the volumetric creep strain, it is possible to use the elasto-plasticity constitutive equation 
based on flowing rule. Here, creep strain is assumed as plastic strain εp

ij. Calculation method of stress 
modified using constitutive equation is discussed below. Strain inclement in an incremental loading step dεji 
is given by sum of elastic strain dεe

ij and plastic strain dεp
ij as shown by eq. (30). 

 ���� � ����� � ����� (30)

Incremental creep strain is defined by eq. (31). 

 ����� � � ������ (31)

Here, function g defines the direction of creep strain in principal stress field. In the case of the direction 
is normal with the von Mises’s yield surface, the function become as eq. (32). Parameter H defines the 
amplitude of creep strain. In the process in relaxation calculation, total increment strain dεij = 0, eq. (33) is 
obtained from eq. (30) and (31). 

 � � �2J� (32)

 ����� � ������ � �� ������ (33)

Using the vector of partial differential of g(σ) by each stress component, eq. (34) is obtained from eq. 
(33). After here, vector representation of stress is used. 
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Relation of incremental elastic strain and incremental stress is defined with strain-stress matrix D. 

 ���� � ������ (36)

By putting β as eq. (37), the difference of stress {dσ} by modifying is obtained by eq. (38) from eq. (34). 
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From eq. (38), by multiplication of D and {F}, {dσ} is obtained as eq. (39). Here, G is the shear 
elasticity modulus. 

 ���� � 2����� � ��� �� � ��� �� � ��� ���� ���� ����T (39)

Also {dσ} is described as eq. (40), the relation σm’=σm is obtained by solving for stress after modify 
using eq. (39) and (40). And by solving for deviator stress eq. (41) is derived. 
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By square the both side of eq. (41), relation of J2 and J2’ is obtained as eq. (42). And substitution of β 
described in eq. (37) into eq. (42) give H as eq. (43). 

 ��� � �� � 2���� �� (42)
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2�  (43)

By substitution of 1 + 2Gβ that is described using J2 and J2’ using eq. (42) into eq. (39), same result of eq. 
(28) is derived. Volumetric strain with creep deformation becomes zero by solving of the dεx + dεy + dεz 
using eq. (34) and (35). Evaluation of dilatancy effect enable by giving the gradient of the surface that is 
defined by g in eq. (32) about hydrostatic axis in principal stress field. Here, direction of creep strain depends 
on the stress only. Degree of creep s has no relation with the direction.  
 
(5) Method of calculation of creep strain 

The strain is evaluated by the calculation that the residual force assumed as load. The residual force is 
calculated by stress that modified by using decreased p. 
 
 

3. Simulation of tri-axial confined test 
(1) Condition of test and material parameters 

The stress modified by the process previously discussed is introduced into the FDM. While, tri-axial 
confining test with constant axial strain rate so-called loading test and with constant axial load so-called 
creep test are simulated. Here, one element FDM model is used. Target tests are two4), 5) (Case1 and Case2 
each). Sedimentary rock is used as specimen for both tests. Each creep tests of Cases1 and 2, such as 70%, 
80%, and 90% loads of peak deviator stress resulted from loading tests is applied. Table 1 shows condition of 
tri-axial compression tests. Table 2 shows model parameters for calculation. Each parameter is adjusted to fit 
the results of calculation with tests results. Parameters relevant to the time dependence are α, av, bn, k’, c, φ, 
q. Herein, α is assumed 1, and bn is assumed av/5 to the straight line length before the time of minimum 
strain rate in Fig.7 becomes longer. These parameters can be also adjusted separately from residual strength 
parameters cr and φr. It is confirmed by test calculation that Poisson’s ratio ν has almost no influence with 
results. It is assumed ν = 0.3. 
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Table 1 Conditions of tests. 
 unit Case14) Case25) 
Confine stress σc (loading，creep 
test) MPa 0.6 0.5 

Strain rate (loading test) %/min 0.1 0.01 
 

Table 2 Material parameters. 
 unit Case1 Case1 
E (Young’s modulus) MPa 900 900 
ν (Poisson’s ratio) - 0.3 0.3 
α (Parameter for increase rate of s, set as 
1) 1/min 1 1 

av (mean) - 400 200 
bn (variance, set as av/5) - 80 40 
k' (spring modulus of rheological model) - 0.0035 0.01 
c (cohesion) MPa 0.16 0.7 
φ (friction angle) drgree 47 47 
q (coefficient of sensitivity for stopping 
time) 1/MPa 22 22 

cr (cohesion of residual stress state) MPa 0 0 
φr (friction angle of residual stress state) drgree 51 56 

 
 
(2) Results 
  Comparison between calculation and test results of Case1 and Case2 are shown in Fig.14 to 17. From 
Fig.14 and 16, it is shown that the specific curves of creep rate were simulated satisfactory. The time rapidly 
strain rate increases, furthermore, were also agreed with that for each case. In Fig.14, the reason of the lines 
did not continue at tertiary creep is that the overflow of  occurred along the iteration for convergence. 
However, the time of that was considered as frailer time. While, for the loading tests, peak values of each 
case obtained numerically corresponded well, and strain – stress relations were also fairly agreed. From 
Fig.18 of the time history of strain, it can be seen the behavior from primary creep to tertiary creep was 
satisfactory simulated consistently. 
 

 
Fig.14 Strain rate by calculation of creep test (Case1, confined pressure σc=0.6MPa). 
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Fig.15  Stress – strain relation by calculation of loading test (Case1, σc=0.6、0.3MPa). 

 

 
Fig.16 Strain rate by calculation of creep test (Case2, σc=0.5MPa). 

 
Fig.17 Stress – strain relation by calculation of loading test (Case2, σc=0.5MPa). 
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Fig.18 Time history of strain (Case1, σc=0.6MPa). 

 
Fig.19 shows the relation between strain rate and peak stress obtained numerically relevant to loading test. 

The peak stress was lager at the region when strain rate became faster. The relation of peak stress and strain 
rate in dual logarithm graphs was liner, which was caused by the derivation of this relation in eq. (9). 
Because it is reported that the peak stress is proportional to logarithm strain rate6) as described by eq. (44), 
the relation obtained by calculation is identical to eq. (44). 

  (44)

where, pj is deviator stress, p0 and  are basis deviator stress and strain rate, respectively, and, a is gradient 
of line as shown in Fig.19. 

 

 
Fig.19 Peak stress vary with strain rate obtained by calculation (Case1, σc=0.6MPa). 

 
Fig.20 shows the relation of deviatoric stress and the time obtained numerically when strain rate became 

the minimum for creep test. The time of minimum strain rate increases exponentially with stress decreasing. 
The liner relation of stress and logarithms time as shown in Fig.20 is also suitable to eq. (9). 
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Fig.20  Time at minimum strain rate (Case1, σc=0.6MPa). 

 
Fig.21 shows an obtained result on the relation of confined stress and peak stress for loading test. It is 

shown that the peak stress increase linearly with confined stress, which agree with the Mohr – Coulomb 
failure criterion. The gradient of the line is dependent upon loading strain rate. For example, when loading 
rate is very slow, peak stress become equal to residual strength, so the gradient coincide with φr. 

 

 
Fig.21  Peak deviator stress vary with confining pressure obtained by calculation (Case1, σc=0.6MPa). 

 
4. Conclusion 

 In this paper, a numerical model to evaluate the creep behavior including strain softening of rock is 
proposed. The predominant parameter s which corresponds to degree of creep development is introduced. To 
describe the strain rate depend on time or creep strain increase, the function of normal distribution is used as 
reference. Furthermore, dependence of stress is described by refer to Arrhenius equation. The rheological 
model consisted of spring and dumper is also developed, which is remarkable that the spring force is equal to 
deviator stress, to install into the finite difference framework. Numerical simulation for an existing evidence 
of creep and loading test under the tri-axial confining condition were performed. From creep test simulation, 
the strain rate curve with primary to tertiary creep was obtained. While, from loading test simulation, stress – 
strain relation curve with strain softening behavior was also obtained. The both simulation results have a 
good agreement with test results using same model parameters. 
   The concern of this model is indicated as follows: The parameter s for the rock, under higher stress than 
residual stress, absolutely increases. Accordingly, parameter s becomes higher than av and then stress 
approaches to residual stress under natural conditions. However, many creep tests show the creep behavior 
from primary to tertiary creep. It follows that the initial s of many specimens is lower than av. If there is rock 
that has stress higher than residual strength under natural conditions, it is may be difficult to simulate the 
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creep behavior of such a rock by using the proposed model herein. 
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