474 research outputs found

    Optimal branching asymmetry of hydrodynamic pulsatile trees

    Full text link
    Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists numerous examples in living systems where supply tree networks have to deliver products in a limited time due to the pulsatile character of the flow. This is the case for mammals respiration for which air has to reach the gas exchange units before the start of expiration. We report here that introducing a systematic branching asymmetry allows to reduce the average delivery time of the products. It simultaneously increases its robustness against the unevitable variability of sizes related to morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold which happens to fit with the asymmetry measured in the human lung. This could indicate that the structure is adjusted at the maximum asymmetry level that allows to feed all terminal units with fresh air.Comment: 4 pages, 4 figure

    1H-NMR Study on the Magnetic Order in the Mixture of Two Spin Gap Systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3

    Full text link
    The antiferromagnetic ordering in the solid-solution of the two spin-gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H-NMR. The sample with the Cl-content ratio x=0.85 showed a clear splitting in spectra below TN=13.5 K, where the spin-lattice relaxation rate T1-1 showed a diverging behavior. The critical exponent of the temperature dependence of the hyperfine field is found to be 0.33.Comment: 11pages, 4 figure

    Diamagnetism above Tc in underdoped Bi2.2Sr1.8Ca2Cu3O10+d

    Full text link
    Single crystals of Bi2+xSr2−xCa2Cu3O10+δ{\rm Bi}_{2+x}{\rm Sr}_{2-x}{\rm Ca}_{2}{\rm Cu}_{3}{\rm O}_{10+\delta}(Bi2223) with x=0.2x=0.2 were grown by a traveling solvent floating zone method in order to investigate the superconducting properties of highly underdoped Bi2223.Grown crystals were characterized by X-ray diffraction, DC susceptibility and resistivity measurements, confirming Bi2223 to be the main phase.The crystals were annealed under various oxygen partial pressures to adjust their carrier densities from optimally doped to highly underdoped.The fluctuation diamagnetic component above the superconducting transition temperature TcT_{\rm c} extracted from the anisotropic normal state susceptibilities χab(T)\chi_{ab}(T) (H⊥cH\perp c) and χc(T)\chi_{c}(T) (H∥cH\parallel c) was found to increase with underdoping, suggesting a decrease in the superconducting dimensionality and/or increase in the fluctuating vortex liquid region.Comment: 6 pages, 7 figures, corrected fig.4 and references, published in J. Phys. Soc. Jpn. 79, 114711 (2010

    Coexistence of antiferromagnetic order and unconventional superconductivity in heavy fermion compounds CeRh_{1-x}Ir_xIn_5: nuclear quadrupole resonance studies

    Full text link
    We present a systematic ^{115}In NQR study on the heavy fermion compounds CeRh_{1-x}Ir_xIn_5 (x=0.25, 0.35, 0.45, 0.5, 0.55 and 0.75). The results provide strong evidence for the microscopic coexistence of antiferromagnetic (AF) order and superconductivity (SC) in the range of 0.35 \leq x \leq 0.55. Specifically, for x=0.5, T_N is observed at 3 K with a subsequent onset of superconductivity at T_c=0.9 K. T_c reaches a maximum (0.94 K) at x=0.45 where T_N is found to be the highest (4.0 K). Detailed analysis of the measured spectra indicate that the same electrons participate in both SC and AF order. The nuclear spin-lattice relaxation rate 1/T_1 shows a broad peak at T_N and follows a T^3 variation below T_c, the latter property indicating unconventional SC as in CeIrIn_5 (T_c=0.4 K). We further find that, in the coexistence region, the T^3 dependence of 1/T_1 is replaced by a T-linear variation below T\sim 0.4 K, with the value \frac{(T_1)_{T_c}}{(T_1)_{low-T}} increasing with decreasing x, likely due to low-lying magnetic excitations associated with the coexisting magnetism.Comment: 20 pages, 14 figure

    Thermal conductivity in B- and C- phase of UPt_3

    Full text link
    Although the superconductivity in UPt_3 is one of the most well studied, there are still lingering questions about the nodal directions in the B and C phase in the presence of a magnetic field. Limiting ourselves to the low temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with in semiclassical approximation using Volovik's approach. The angular dependence of the magnetothermal conductivity for an arbitrary field direction should clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er≃_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    Criterion for weak spin-orbit coupling in heavy-fermion superconductivity: A numerical renormalization-group study

    Full text link
    A criterion for effective irrelevancy of the spin-orbit coupling in the heavy-fermion superconductivity is discussed on the basis of the impurity Anderson model with two sets of Kramers doublets. Using Wilson's numerical renormalization-group method, we demonstrate a formation of the quasiparticle as well as the renormalization of the rotational symmetry-breaking interaction in the lower Kramers doublet (quasispin) space. A comparison with the quasispin conserving interaction exhibits the effective irrelevancy of the symmetry-breaking interaction for the splitting of two doublets Delta larger than the characteristic energy of the local spin fluctuation T_K. The formula for the ratio of two interactions is also determined.Comment: 4 pages, 4 figures (2 color figures

    Ginzburg-Landau Equations for Coexistent States of Superconductivity and Antiferromagnetism in t-J model

    Full text link
    Ginzburg-Landau (GL) equations for the coexistent state of superconductivity and antiferromagnetism are derived microscopically from the t-J model with extended transfer integrals. GL equations and the GL free energy, which are obtained based on the slave-boson mean-field approximation, reflect the electronic structure of the microscopic model, especially the evolution of the Fermi surface due to the change of the doping rate. Thus they are suitable for studying the material dependence of the coexistent states in high-TCT_C cuprate superconductors.Comment: 12 page

    Coexistence of Superconductivity and Antiferromagnetism in Multilayered High-TcT_c Superconductor HgBa2_2Ca4_4Cu5_5Oy_y: A Cu-NMR Study

    Full text link
    We report a coexistence of superconductivity and antiferromagnetism in five-layered compound HgBa2_2Ca4_4Cu5_5Oy_y (Hg-1245) with Tc=108T_c=108 K, which is composed of two types of CuO2_2 planes in a unit cell; three inner planes (IP's) and two outer planes (OP's). The Cu-NMR study has revealed that the optimallydoped OP undergoes a superconducting (SC) transition at Tc=108T_c=108 K, whereas the three underdoped IP's do an antiferromagnetic (AF) transition below TN∼T_N\sim 60 K with the Cu moments of ∼(0.3−0.4)μB\sim (0.3-0.4)\mu_B. Thus bulk superconductivity with a high value of Tc=108T_c=108 K and a static AF ordering at TN=60T_N=60 K are realized in the alternating AF and SC layers. The AF-spin polarization at the IP is found to induce the Cu moments of ∼0.02μB\sim0.02\mu_B at the SC OP, which is the AF proximity effect into the SC OP.Comment: 6 pages, 8 figure

    High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism -

    Full text link
    High-temperature superconductivity (HTSC) in copper oxides emerges on a layered CuO2 plane when an antiferromagnetic Mott insulator is doped with mobile hole carriers. We review extensive studies of multilayered copper oxides by site-selective nuclear magnetic resonance (NMR), which have uncovered the intrinsic phase diagram of antiferromagnetism (AFM) and HTSC for a disorder-free CuO2 plane with hole carriers. We present our experimental findings such as the existence of the AFM metallic state in doped Mott insulators, the uniformly mixed phase of AFM and HTSC, and the emergence of d-wave SC with a maximum Tc just outside a critical carrier density, at which the AFM moment on a CuO2 plane disappears. These results can be accounted for by the Mott physics based on the t-J model. The superexchange interaction J_in among spins plays a vital role as a glue for Cooper pairs or mobile spin-singlet pairs, in contrast to the phonon-mediated attractive interaction among electrons established in the Bardeen-Cooper-Schrieffer (BCS) theory. We remark that the attractive interaction for raising the TcT_c of HTSC up to temperatures as high as 160 K is the large J_in (~0.12 eV), which binds electrons of opposite spins to be on neighboring sites, and that there are no bosonic glues. It is the Coulomb repulsive interaction U(> 6 eV) among Cu-3d electrons that plays a central role in the physics behind high-Tc phenomena. A new paradigm of the SC mechanism opens to strongly correlated electron matter.Comment: 20 pages, 25 figures, Special topics "Recent Developments in Superconductivity" in J. Phys. Soc. Jpn., Published December 26, 201
    • …
    corecore