41 research outputs found

    Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation.

    Get PDF
    Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s) responsible for the observed effects is of vital importance

    VEGF Spatially Directs Angiogenesis during Metanephric Development in Vitro

    Get PDF
    AbstractVascular endothelial growth factor (VEGF) is required for endothelial cell differentiation, vasculogenesis, and normal glomerular vascularization. To examine whether VEGF plays a role as a chemoattractant for the developing kidney vasculature, avascular metanephric kidneys from rat embryos (E14) were cocultured with endothelial cells. To determine whether VEGF directly provides chemoattractive guidance for migration, we examined migration of endothelial cells toward VEGF-coated beads. Mouse glomerular endothelial cells expressing β-galactosidase (MGEC) were isolated from Flk-1(+/−) heterozygous mice and passaged 4–12 times. Upon 24 h culture on collagen I gels MGEC formed a lattice or capillary-like network. Embryonic metanephroi were cocultured with MGEC on collagen I gels for 1–6 days in defined media, stained for β-galactosidase, and examined by light microscopy. Metanephric organs induced a rearrangement of the endothelial cell lattice and attracted MGEC. MGEC invaded the metanephric organs forming capillary-like structures within and surrounding the forming nephrons. This process was accelerated and amplified by low oxygen (3% O2) and was prevented by anti-VEGF neutralizing antibodies. MGECs migrated toward VEGF-coated beads, whereas PBS-coated beads did not alter MGEC networks. We conclude that VEGF produced by the differentiating nephrons acts as a chemoattractant providing spatial direction to developing capillaries toward forming nephrons during metanephric development in vitro

    Generation of Functional Kidney Organoids In Vivo Starting from a Single-Cell Suspension.

    Get PDF
    Novel methods in developmental biology and stem cell research have made it possible to generate complex kidney tissues in vitro that resemble whole organs and are termed organoids. In this chapter we describe a technique using suspensions of fully dissociated mouse kidney cells to yield organoids that can become vascularized in vivo and mature and display physiological functions. This system can be used to produce fine-grained human-mouse chimeric organoids in which the renal differentiation potential of human cells can be assessed. It can also be an excellent method for growing chimeric organoids in vivo using human stem cells, which can differentiate into specialized kidney cells and exert nephron-specific functions. We provide detailed methods, a brief discussion of critical points, and describe some successfully implemented examples of the system

    Renal endothelial injury and microvascular dysfunction in acute kidney injury

    Get PDF
    The kidney is comprised of heterogeneous cell populations that function together to perform a number of tightly controlled, complex and interdependent processes. Renal endothelial cells contribute to vascular tone, regulation of blood flow to local tissue beds, modulation of coagulation and inflammation, and vascular permeability. Both ischemia and sepsis have profound effects on the renal endothelium, resulting in microvascular dysregulation resulting in continued ischemia and further injury. In recent years, the concept of the vascular endothelium as an organ that is both the source of and target for inflammatory injury has become widely appreciated. Here we revisit the renal endothelium in the light of ever evolving molecular advances

    Angiogenesis in male breast cancer

    Get PDF
    BACKGROUND: Male breast cancer is a rare but aggressive and devastating disease. This disease presents at a later stage and in a more advanced fashion than its female counterpart. The immunophenotype also appears to be distinct when compared to female breast cancer. Angiogenesis plays a permissive role in the development of a solid tumor and provides an avenue for nutrient exchange and waste removal. Recent scrutiny of angiogenesis in female breast cancer has shown it to be of significant prognostic value. It was hypothesized that this holds true in invasive ductal carcinoma of the male breast. In the context of male breast cancer, we investigated the relationship of survival and other clinico-pathological variables to the microvascular density of the tumor tissue. METHODS: Seventy-five cases of primary male breast cancer were identified using the records of the Saskatchewan Cancer Agency over a period of 26 years. Forty-seven cases of invasive ductal carcinoma of the male breast had formalin-fixed paraffin-embedded tissue blocks that were suitable for this study. All cases were reviewed. Immunohistochemical staining was performed for the angiogenic markers (cluster designations 31 (CD31), 34 (CD34) and 105 (CD105), von Willebrand factor (VWF), and vascular endothelial growth factor (VEGF)). Microvascular density (MVD) was determined using average, centre, and highest microvessel counts (AMC, CMC, and HMC, respectively). Statistical analyses compared differences in the distribution of survival times and times to relapse between levels of MVD, tumor size, node status and age at diagnosis. In addition, MVD values were compared within each marker, between each marker, and were also compared to clinico-pathological data. RESULTS: Advanced age and tumor size were related to shorter survival times. There were no statistically significant differences in distributions of survival times and times to relapse between levels of MVD variables. There was no significant difference in MVD between levels of the different clinico-pathological variables. MVD was strongly and significantly correlated between AMC, CMC and HMC for CD31, CD34, and CD105 (p < 0.01) and remained moderate to weak for VWF and VEGF. CONCLUSION: Microvascular density does not appear to be an independent prognostic factor in male breast cancer. However, the likelihood of death for men with breast cancer is increased in the presence of increased age at diagnosis and advanced tumor size. This is perhaps linked to inherent tumor vasculature, which is strongly related throughout a tumor section

    Effects of Bevacizumab, an Anti Vascular Endothelial Growth Factor Monoclonal Antibody, on Kidney Function and Morphology

    Get PDF
    AimTo constitute an experimental rat model by using human VEGF monoclonal antibody bevacizumab, for observation of renal side effects of this treatment.Materials and MethodsThirtysix adult female Wistar albino rats has been divided as two main groups: “3 days” and “21 days” . Each group has been divided in three; bevacizumab 10 mg/kg and 20 mg/kg were administered intravenously from the tail veins of the two subgroups and 1 mg/kg saline was administered to the third subgroup as control. Urine for 24 hours for detection of proteinuria and blood samples for detection of renal funtions were collected before, third day and 21st day of the drug administration and rats were sacrified at third and 21st days for pathological examination of kidneys.ResultsTwenty four hours urine protein excretion, creatinin excretion and urine protein/creatinin ratio were demonstrated as significantly increased on the third day of the rats administered 10 mg/kg bevacizumab; however, any significant increase of proteinuria couldn’t be shown on the 21 days group rats administered neither 10 mg/kg or 20 mg/kg. Pathological examination of rats sacrified on third day demonstrate the significant increase of bowman capsule gap and interstitial inflamation as correlated with the dosage of the drug. The thickness of vessel wall was observed on the pathological examination of rats sacrified on 21st day.ConclusionIt has been shown that bevacizumab administration of 10 mg/kg for three days is proper for constitution of an experimental rat model

    Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats

    Get PDF
    Because inhaled carbon monoxide (CO) provides potent anti-inflammatory and antioxidant effects against ischemia reperfusion injury, we hypothesized that treatment of organ donors with inhaled CO would decrease graft injury after heart transplantation. Hearts were heterotopically transplanted into syngeneic Lewis rats after 8 hours of cold preservation in University of Wisconsin solution. Donor rats were exposed to CO at a concentration of 250 parts per million for 24 hours via a gas-exposure chamber. Severity of myocardial injury was determined by total serum creatine phosphokinase and troponin I levels at three hours after reperfusion. In addition, Affymetrix gene array analysis of mRNA transcripts was performed on the heart graft tissue prior to implantation. Recipients of grafts from CO-exposed donors had lower levels of serum troponin I and creatine phosphokinase; less upregulation of mRNA for interleukin-6, intercellular adhesion molecule-1, and tumor necrosis factor-α; and fewer infiltrating cells. Although donor pretreatment with CO altered the expression of 49 genes expressly represented on the array, we could not obtain meaningful data to explain the mechanisms by which CO potentiated the protective effects. Pretreatment with CO gas before organ procurement effectively protected cardiac grafts from ischemia reperfusion-induced injury in a rat heterotopic cardiac transplant model. A clinical report review indicated that CO-poisoned organ donors may be comparable to non-poisoned donors.ope
    corecore