1,561 research outputs found
Pressure-dependent 13C chemical shifts in proteins: Origins and applications
Pressure-dependent (13)C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH(3), CH(2) and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the gamma-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual (13)C alpha shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas (13)C beta shifts retain significant dependence on local compression, making them less useful as structural restraints
Overview: Computer vision and machine learning for microstructural characterization and analysis
The characterization and analysis of microstructure is the foundation of
microstructural science, connecting the materials structure to its composition,
process history, and properties. Microstructural quantification traditionally
involves a human deciding a priori what to measure and then devising a
purpose-built method for doing so. However, recent advances in data science,
including computer vision (CV) and machine learning (ML) offer new approaches
to extracting information from microstructural images. This overview surveys CV
approaches to numerically encode the visual information contained in a
microstructural image, which then provides input to supervised or unsupervised
ML algorithms that find associations and trends in the high-dimensional image
representation. CV/ML systems for microstructural characterization and analysis
span the taxonomy of image analysis tasks, including image classification,
semantic segmentation, object detection, and instance segmentation. These tools
enable new approaches to microstructural analysis, including the development of
new, rich visual metrics and the discovery of
processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions
D * polarization vs. R D(∗) anomalies in the leptoquark models
Polarization measurements in B → D(*)Ƭν̅ are useful to check consistency in new physics explanations for the RD and RD* anomalies. In this paper, we investigate the D* and Ƭ polarizations and focus on the new physics contributions to the fraction of a longitudinal D* polarization (F D*/L ), which is recently measured by the Belle collaboration F D*/L = 0:60 ± 0:09, in model-independent manner and in each single leptoquark model (R2, S1 and U1) that can naturally explain the RD(*) anomalies. It is found that B(B+/c → Ƭ⁺ν) severely restricts deviation from the Standard Model (SM) prediction of F D*/L,SM = 0:46 ± 0:04 in the leptoquark models: [0:43; 0:44], [0:42; 0:48], and [0:43; 0:47] are predicted as a range of F D*/L for the R2, S1, and U1 leptoquark models, respectively, where the current data of RD(*) is satised at 1 σ level. It is also shown that the Ƭ polarization observables can much deviate from the SM predictions. The Belle II experiment, therefore, can check such correlations between RD(*) and the polarization observables, and discriminate among the leptoquark models
Synthesis, Stability, and Crystal Structure of an Azulenium Cation Containing an Adamantyl Group
This is the pre-peer reviewed version of the following article: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY. 2008(31):5301-5307 (2008), which has been published in final form at doi:10.1002/ejoc.200800700.ArticleEUROPEAN JOURNAL OF ORGANIC CHEMISTRY. 2008(31):5301-5307 (2008)journal articl
Modern Russian informational technologies of enterprise management. Platform 1C
The history of the development of the 1C program is briefly described. The topic of licensing and product safety was touched upon. Little is said about the corporate line and the new direction of 1C: EnterpriseDevelopmentTools. Also get acquainted with the products of 1C:ManufacturingEnterpriseManagement and 1C:EnterpriseResourcesPlanning
The Effect of Shear on Phase-Ordering Dynamics with Order-Parameter-Dependent Mobility: The Large-n Limit
The effect of shear on the ordering-kinetics of a conserved order-parameter
system with O(n) symmetry and order-parameter-dependent mobility
\Gamma({\vec\phi}) \propto (1- {\vec\phi} ^2/n)^\alpha is studied analytically
within the large-n limit. In the late stage, the structure factor becomes
anisotropic and exhibits multiscaling behavior with characteristic length
scales (t^{2\alpha+5}/\ln t)^{1/2(\alpha+2)} in the flow direction and (t/\ln
t)^{1/2(\alpha+2)} in directions perpendicular to the flow. As in the \alpha=0
case, the structure factor in the shear-flow plane has two parallel ridges.Comment: 6 pages, 2 figure
Non-equilibrium interface equations: An application to thermo-capillary motion in binary systems
Interface equations are derived for both binary diffusive and binary fluid
systems subjected to non-equilibrium conditions, starting from the
coarse-grained (mesoscopic) models. The equations are used to describe
thermo-capillary motion of a droplet in both purely diffusive and fluid cases,
and the results are compared with numerical simulations. A mesoscopic chemical
potential shift, owing to the temperature gradient, and associated mesoscopic
corrections involved in droplet motion are elucidated.Comment: 12 pages; Latex, revtex, ap
Stability of a Nonequilibrium Interface in a Driven Phase Segregating System
We investigate the dynamics of a nonequilibrium interface between coexisting
phases in a system described by a Cahn-Hilliard equation with an additional
driving term. By means of a matched asymptotic expansion we derive equations
for the interface motion. A linear stability analysis of these equations
results in a condition for the stability of a flat interface. We find that the
stability properties of a flat interface depend on the structure of the driving
term in the original equation.Comment: 14 pages Latex, 1 postscript-figur
Phase Separation Kinetics in a Model with Order-Parameter Dependent Mobility
We present extensive results from 2-dimensional simulations of phase
separation kinetics in a model with order-parameter dependent mobility. We find
that the time-dependent structure factor exhibits dynamical scaling and the
scaling function is numerically indistinguishable from that for the
Cahn-Hilliard (CH) equation, even in the limit where surface diffusion is the
mechanism for domain growth. This supports the view that the scaling form of
the structure factor is "universal" and leads us to question the conventional
wisdom that an accurate representation of the scaled structure factor for the
CH equation can only be obtained from a theory which correctly models bulk
diffusion.Comment: To appear in PRE, figures available on reques
- …