56 research outputs found

    Factors determining maximum torque and achievement of the recommended torque for manual implant drivers: A pilot study

    Get PDF
    When fixing an oral implant superstructure with a screw, operators must be aware of the torque being applied by their fingers to prevent the transmission of excessive or insufficient torque to the implant. In this study, we identified the factors that determine individual maximum attainable torque and those that determine the achievement of the prescribed torque. We evaluated 16 dentists on their use of two types of manual implant drivers(UniGrip by Nobel Biocare and Carrier Hex by Zimmer Biomet)and measured the maximum torque(MT)generated by their fingers. The target torque was set at 15N. Measurements were taken while the participants were turning the implant screw with or without gloves in both clockwise and counterclockwise directions. The grip and finger strength of each participant were measured, and the data showed that torque values were higher among the male participants during clockwise rotation and when they were wearing gloves(p<0.05). Positive correlations were found between the MT and grip strength and between the MT and finger strength. These results suggest that dentists should monitor their ability to consistently achieve the recommended torque for implant drivers

    Characterization of Noncalcified Coronary Plaques and Identification of Culprit Lesions in Patients With Acute Coronary Syndrome by 64-Slice Computed Tomography

    Get PDF
    ObjectivesWe sought to characterize noncalcified coronary atherosclerotic plaques in culprit and remote coronary atherosclerotic lesions in patients with acute coronary syndrome (ACS) with 64-slice computed tomography (CT).BackgroundLower CT density, positive remodeling, and adjacent spotty coronary calcium are characteristic vessel changes in unstable coronary plaques.MethodsOf 147 consecutive patients who underwent contrast-enhanced 64-slice CT examination for coronary artery visualization, 101 (ACS; n = 21, non-ACS; n = 80) having 228 noncalcified coronary atherosclerotic plaques (NCPs) were studied. Each NCP detected within the vessel wall was evaluated by determining minimum CT density, vascular remodeling index (RI), and morphology of adjacent calcium deposits.ResultsThe CT visualized more NCPs in ACS patients (65 lesions, 3.1 ± 1.2/patient) than in non-ACS patients (163 lesions, 2.0 ± 1.1/patient). Minimum CT density (24 ± 22 vs. 42 ± 29 Hounsfield units [HU], p < 0.01), RI (1.14 ± 0.18 vs. 1.08 ± 0.19, p = 0.02), and frequency of adjacent spotty calcium of NCPs (60% vs. 38%, p < 0.01) were significantly different between ACS and non-ACS patients. Frequency of NCPs with minimum CT density <40 HU, RI >1.05, and adjacent spotty calcium was approximately 2-fold higher in the ACS group than in the non-ACS group (43% vs. 22%, p < 0.01). In the ACS group, only RI was significantly different between 21 culprit and 44 nonculprit lesions (1.26 ± 0.16 vs. 1.09 ± 0.17, p < 0.01), and a larger RI (≥1.23) was independently related to the culprit lesions (odds ratio: 12.3; 95% confidential interval: 2.9 to 68.7, p < 0.01), but there was a substantial overlap of the distribution of RI values in these 2 groups of lesions.ConclusionsSixty-four-slice CT angiography demonstrates a higher prevalence of NCPs with vulnerable characteristics in patients with ACS as compared with stable clinical presentation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Splitting and reorientation of pi-conjugation by an unprecedented photo-rearrangement reaction

    Get PDF
    A dodecahexaene analogue cross-conjugated with four carbonyl groups was prepared from an aliphatic tetraketone. Exposure to LED light (>420 nm) led to the splitting of the dodecahexaene conjugation into two hexatriene subunits, connected through a stereogenic carbon atom. The two triene subunits exhibited excitonic coupling in the UV-Vis absorption and CD spectra

    Thermo-Responsive Nanocomposite Hydrogels Based on PEG-<i>b</i>-PLGA Diblock Copolymer and Laponite

    No full text
    Poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (PEG-b-PLGA) diblock copolymers are widely known as polymeric surfactants for biomedical applications, and exhibit high solubility in water compared to PLGA-b-PEG-b-PLGA triblock copolymers known as gelation agents. In order to overcome the difficulties in the preparation of thermo-responsive hydrogels based on PLGA-b-PEG-b-PLGA due to the low solubility in water, the fabrication of thermo-responsive hydrogels based on PEG-b-PLGA with high solubility in water was attempted by adding laponite to the PEG-b-PLGA solution. In detail, PEG-b-PLGA with high solubility in water (i.e., high PEG/PLGA ratio) were synthesized. Then, the nanocomposite solution based on PEG-b-PLGA and laponite (laponite/PEG-b-PLGA nanocomposite) was fabricated by mixing the PEG-b-PLGA solutions and the laponite suspensions. By using the test tube inversion method and dynamic mechanical analysis (DMA), it was found that thermo-responsive hydrogels could be obtained by using PEG-b-PLGA, generally known as polymeric surfactants, and that the gelation temperature was around the physiological temperature and could be regulated by changing the solution composition. Furthermore, from the structural analysis by small angle neutron scattering (SANS), PEG-b-PLGA was confirmed to be on the surface of the laponite platelets, and the thermosensitive PEG-b-PLGA on the laponite surface could trigger the thermo-responsive connection of the preformed laponite network
    corecore