46 research outputs found

    Association of exposure level to passive smoking with hypertension among lifetime nonsmokers in Japan : a cross-sectional study

    Get PDF
    Brief exposure to passive smoking immediately elevates blood pressure. However, little is known about the association between exposure to passive smoking and chronic hypertension. We aimed to examine this association in a cross-sectional study, after controlling multiple potential confounders. Participants included 32,098 lifetime nonsmokers (7,216 men and 24,882 women) enrolled in the Japan Multi-Institutional Collaborative Cohort Study. Passive smoking was assessed using a self-administered questionnaire. The single question about exposure to passive smoking had five response options: “sometimes or almost never,” “almost every day, 2 hours/day or less,” “almost every day, 2 to 4 hours/day,” “almost every day, 4 to 6 hours/day,” and “almost every day, 6 hours/day or longer.” Hypertension was defined as any of the following: systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or use of antihypertensive medication. Multivariate-adjusted odds ratio (OR) and 95% confidence interval (CI) for hypertension were estimated by exposure level to passive smoking using unconditional logistic regression models. The multivariate-adjusted OR for hypertension in those exposed almost every day was 1.11 (95% CI: 1.03–1.20) compared with those exposed sometimes or almost never. The OR for a 1-hour per day increase in exposure was 1.03 (95% CI: 1.01–1.06, P for trend = .006). This association was stronger in men than in women; the ORs were 1.08 (95% CI: 1.01–1.15, P for trend = .036) and 1.03 (95% CI: 1.00–1.05, P for trend = .055), respectively. Our findings suggest importance of tobacco smoke control for preventing hypertension

    Role of the RNA-Binding Protein Nrd1 in Stress Granule Formation and Its Implication in the Stress Response in Fission Yeast

    Get PDF
    We have previously identified the RNA recognition motif (RRM)-type RNA-binding protein Nrd1 as an important regulator of the posttranscriptional expression of myosin in fission yeast. Pmk1 MAPK-dependent phosphorylation negatively regulates the RNA-binding activity of Nrd1. Here, we report the role of Nrd1 in stress-induced RNA granules. Nrd1 can localize to poly(A)-binding protein (Pabp)-positive RNA granules in response to various stress stimuli, including heat shock, arsenite treatment, and oxidative stress. Interestingly, compared with the unphosphorylatable Nrd1, Nrd1DD (phosphorylation-mimic version of Nrd1) translocates more quickly from the cytoplasm to the stress granules in response to various stimuli; this suggests that the phosphorylation of Nrd1 by MAPK enhances its localization to stress-induced cytoplasmic granules. Nrd1 binds to Cpc2 (fission yeast RACK) in a phosphorylation-dependent manner and deletion of Cpc2 affects the formation of Nrd1-positive granules upon arsenite treatment. Moreover, the depletion of Nrd1 leads to a delay in Pabp-positive RNA granule formation, and overexpression of Nrd1 results in an increased size and number of Pabp-positive granules. Interestingly, Nrd1 deletion induced resistance to sustained stresses and enhanced sensitivity to transient stresses. In conclusion, our results indicate that Nrd1 plays a role in stress-induced granule formation, which affects stress resistance in fission yeast

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant

    Get PDF
    SARS-CoV-2オミクロンBA.2.75株(通称ケンタウロス)のウイルス学的性状の解明. 京都大学プレスリリース. 2022-10-12.The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5

    Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants

    Get PDF
    In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Effects of bladder outlet obstruction on properties of Ca2+-activated K+ channels in rat bladder

    Get PDF
    In this study, we investigated the effects of bladder outlet obstruction (BOO) on the expression and function of large conductance (BK) and small conductance (SK) Ca2+-activated K+ channels in detrusor smooth muscle. The bladder from adult female Sprague-Dawley rats with 6-wk BOO were used. The mRNA expression of the BK channel α-subunit, β1-, β2-, and β4-subunits and SK1, SK2, and SK3 channels were investigated using real-time RT-PCR. All subunits except for the BK-β2, SK2, and SK3 channels were predominantly expressed in the detrusor smooth muscle rather than in the mucosa. The mRNA expression of the BK channel α-subunit was not significantly changed in obstructed bladders. However, the expression of the BK channel β1-subunit and the SK3 channel was remarkably increased in obstructed bladders. On the other hand, the expression of the BK channel β4-subunit was decreased as the severity of BOO-induced bladder overactivity progressed. In detrusor smooth muscle strips from obstructed bladders, blockade of BK channels by iberiotoxin (IbTx) or charybdotoxin (CTx) and blockade of SK channels by apamin increased the amplitude of spontaneous contractions. These blockers also increased the contractility and affinity of these strips for carbachol during cumulative applications. The facilitatory effects elicited by these K+ channel blockers were larger in the strips from obstructed bladders compared with control bladders. These results suggest that long-term exposure to BOO for 6 wk enhances the function of both BK and SK types of Ca2+-activated K+ channels in the detrusor smooth muscle to induce an inhibition of bladder contractility, which might be a compensatory mechanism to reduce BOO-induced bladder overactivity
    corecore