12 research outputs found

    Neural activation differences in amputees during imitation of intact versus amputee movements

    Get PDF
    The mirror neuron system (MNS) has been attributed with increased activation in motor-related cortical areas upon viewing of another's actions. Recent work suggests that limb movements that are similar and dissimilar in appearance to that of the viewer equivalently activate the MNS. It is unclear if this result can be observed in the action encoding areas in amputees who use prosthetic devices. Intact subjects and upper extremity amputee prosthesis users were recruited to view video demonstrations of tools being used by an intact actor and a prosthetic device user. All subjects pantomimed the movements seen in the video while recording electroencephalography (EEG). Intact subjects showed equivalent left parietofrontal activity during imitation planning after watching the intact or prosthetic arm. Likewise, when prosthesis users imitated prosthesis demonstrations, typical left parietofrontal activation was observed. When prosthesis users imitated intact actors, an additional pattern was revealed which showed greater activity in right parietal and occipital regions that are associated with the mentalizing system. This change may be required for prosthesis users to plan imitation movements in which the limb states between the observed and the observer do not match. The finding that prosthesis users imitating other prosthesis users showed typical left parietofrontal activation suggests that these subjects engage normal planning related activity when they are able to imitate a limb matching their own. This result has significant implications on rehabilitation, as standard therapy involves training with an intact occupational therapist, which could necessitate atypical planning mechanisms in amputees when learning to use their prosthesis

    Developing core sets for persons following amputation based on the International Classification of Functioning, Disability and Health as a way to specify functioning

    Get PDF
    Amputation is a common late stage sequel of peripheral vascular disease and diabetes or a sequel of accidental trauma, civil unrest and landmines. The functional impairments affect many facets of life including but not limited to: Mobility; activities of daily living; body image and sexuality. Classification, measurement and comparison of the consequences of amputations has been impeded by the limited availability of internationally, multiculturally standardized instruments in the amputee setting. The introduction of the International Classification of Functioning, Disability and Health (ICF) by the World Health Assembly in May 2001 provides a globally accepted framework and classification system to describe, assess and compare function and disability. In order to facilitate the use of the ICF in everyday clinical practice and research, ICF core sets have been developed that focus on specific aspects of function typically associated with a particular disability. The objective of this paper is to outline the development process for the ICF core sets for persons following amputation. The ICF core sets are designed to translate the benefits of the ICF into clinical routine. The ICF core sets will be defined at a Consensus conference which will integrate evidence from preparatory studies, namely: (a) a systematic literature review regarding the outcome measures of clinical trails and observational studies, (b) semi-structured patient interviews, (c) international experts participating in an internet-based survey, and (d) cross-sectional, multi-center studies for clinical applicability. To validate the ICF core sets field-testing will follow. Invitation for participation: The development of ICF Core Sets is an inclusive and open process. Anyone who wishes to actively participate in this process is invited to do so

    Utilization of Magnetic Resonance Imaging, Segmentation and Finite Element Analysis (FEA) to Fabricate Prosthetic Sockets

    No full text
    Presented during the First Annual Georgia Institute of Technology, School of Applied Physiology Prosthetic Orthotic Research Symposium, Friday, April 22nd, 2011, 12:30 – 5:30pm, Student Success Center, Press Room A.Runtime: 15:51 minutesFaculty member, Robert Kistenberg, MPH, CP, LP, FAAOP gave a presentation on ongoing research on utilization of magnetic resonance imaging, segmentation and finite element analysis (FEA) to fabricate prosthetic sockets

    Comparison of liner assisted suspensions in transtibial prosthetics

    Get PDF
    Issued as final reportAmerican Orthotic and Prosthetic Associatio

    Medical imaging generated dynamic prosthetic sockets

    Get PDF
    Issued as final reportUnited States. Office of Naval Researc

    Award Presentation Ceremony

    No full text
    Award presentation ceremony at the 3rd Annual Prosthetic Orthotic Research Symposium, April 19, 2013 12:30 pm – 05:30 pm, Student Center Theater.Runtime: 02:53 minutes

    Mathematical modeling and mechanical and histopathological testing of porous prosthetic pylon for direct skeletal attachment

    No full text
    This article presents recent results in the development of the skin and bone integrated pylon (SBIP) intended for direct skeletal attachment of limb prostheses. In our previous studies of the porous SBIP-1 and SBIP-2 prototypes, the bond site between the porous pylons and residuum bone and skin did not show the inflammation characteristically observed when solid pylons are used. At the same time, porosity diminished the strength of the pylon. To find a reasonable balance between the biological conductivity and the strength of the porous pylon, we developed a mathematical model of the composite permeable structure. A novel manufacturing process was implemented, and the new SBIP-3 prototype was tested mechanically. The minimal strength requirements established earlier for the SBIP were exceeded threefold. The first histopathological analysis of skin, bone, and the implanted SBIP-2 pylons was conducted on two rats and one cat. The histopathological analysis provided new evidence of inflammation-free, deep ingrowth of skin and bone cells throughout the SBIP structure
    corecore