1,211 research outputs found

    Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Get PDF
    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC

    The Formation of Contact and Very Close Binaries

    Get PDF

    NEW ASPECTS OF ANTI-INFECTION IMMUNITY

    Get PDF
    Abstract. Four types of adaptive immune response which are regulated by different T-cell populations, namely Th1, Th2, Th17 and T regs have been described. At the first time classification is based on the difference in transcription factors but not due to diversity of cytokines produced. Each population of T-lymphocytes possesses a set of unique transcription factors and directions of cell signaling. Each type of immune responses plays a key role in the protection against certain types of pathogens. The Th1-response is important against intracellular bacteria and fungi, the Th17 — against extracellular, the Th2 — against yeasts and protozoa. T-regulatory cells control all types of immune responses. Diversity of immune response mechanisms occurs due to involvement of different effector cells. The Th1-type of response is connected with macrophage activation, Th2-cells cooperate with B-lymphocytes as well as attract eosinophils and mast cells. Th17 lymphocytes stimulate neutrophils and epithelial cells. T-cell differentiation is directed by the cytokines produced by innate immune cells. Phagocytes recognize molecular patterns at the surface of pathogens via pattern-recognition receptors (PRR), become activated and synthesize cytokines. Pathogen plays important role in this process while instructing dendritic cells. Pathogen dials a special code from a number of phagocyte surface receptors, which is named as «combinatory» recognition. Phagocytes possess several different types of activation and synthesize different cytokines that direct T-lymphocytes to a certain type of differentiation

    Transplantable Subcutaneous Hepatoma 22a Affects Functional Activity of Resident Tissue Macrophages in Periphery

    Get PDF
    Tumors spontaneously develop central necroses due to inadequate blood supply. Recent data indicate that dead cells and their products are immunogenic to the host. We hypothesized that macrophage tumor-dependent reactions can be mediated differentially by factors released from live or dead tumor cells. In this study, functional activity of resident peritoneal macrophages was investigated in parallel with tumor morphology during the growth of syngeneic nonimmunogenic hepatoma 22a. Morphometrical analysis of tumor necroses, mitoses and leukocyte infiltration was performed in histological sections. We found that inflammatory potential of peritoneal macrophages in tumor-bearing mice significantly varied depending on the stage of tumor growth and exhibited two peaks of activation as assessed by nitroxide and superoxide anion production, 5′-nucleotidase activity and pinocytosis. Increased inflammatory reactions were not followed by the enhancement of angiogenic potential as assessed by Vascular Endothelial Growth Factor mRNA expression. Phases of macrophage activity corresponded to the stages of tumor growth characterized by high proliferative potential. The appearance and further development of necrotic tissue inside the tumor did not coincide with changes in macrophage behavior and therefore indirectly indicated that activation of macrophages was a reaction mostly to the signals produced by live tumor cells

    Phospholipase C Gamma 2 Is Critical for Development of a Murine Model of Inflammatory Arthritis by Affecting Actin Dynamics in Dendritic Cells

    Get PDF
    BACKGROUND:Dendritic cells (DCs) are highly specialized cells, which capture antigen in peripheral tissues and migrate to lymph nodes, where they dynamically interact with and activate T cells. Both migration and formation of DC-T cell contacts depend on cytoskeleton plasticity. However, the molecular bases governing these events have not been completely defined. METHODOLOGY/PRINCIPAL FINDINGS:Utilizing a T cell-dependent model of arthritis, we find that PLCgamma2-/- mice are protected from local inflammation and bone erosion. PLCgamma2 controls actin remodeling in dendritic cells, thereby affecting their capacity to prime T cells. DCs from PLCgamma2-/- mice mature normally, however they lack podosomes, typical actin structures of motile cells. Absence of PLCgamma2 impacts both DC trafficking to the lymph nodes and migration towards CCL21. The interaction with T cells is also affected by PLCgamma2 deficiency. Mechanistically, PLCgamma2 is activated by CCL21 and modulates Rac activation. Rac1/2-/- DCs also lack podosomes and do not respond to CCL21. Finally, antigen pulsed PLCgamma2-/- DCs fail to promote T cell activation and induce inflammation in vivo when injected into WT mice. Conversely, injection of WT DCs into PLCgamma2-/- mice rescues the inflammatory response but not focal osteolysis, confirming the importance of PLCgamma2 both in immune and bone systems. CONCLUSIONS/SIGNIFICANCE:This study demonstrates a critical role for PLCgamma2 in eliciting inflammatory responses by regulating actin dynamics in DCs and positions the PLCgamma2 pathway as a common orchestrator of bone and immune cell functions during arthritis
    corecore