1,252 research outputs found

    Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor

    Get PDF
    We describe measurements of the rotational component of teleseismic surface waves using an inertial high-precision ground-rotation-sensor installed at the LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad/Hz/ \sqrt{\rm Hz} at 50 mHz and a translational coupling of less than 1 μ\murad/m enabling translation-free measurement of small rotations. We present observations of the rotational motion from Rayleigh waves of six teleseismic events from varied locations and with magnitudes ranging from M6.7 to M7.9. These events were used to estimate phase dispersion curves which shows agreement with a similar analysis done with an array of three STS-2 seismometers also located at LHO

    Performance of the Charge Injection Capability of Suzaku XIS

    Full text link
    A charge injection technique is applied to the X-ray CCD camera, XIS (X-ray Imaging Spectrometer) onboard Suzaku. The charge transfer inefficiency (CTI) in each CCD column (vertical transfer channel) is measured by the injection of charge packets into a transfer channel and subsequent readout. This paper reports the performances of the charge injection capability based on the ground experiments using a radiation damaged device, and in-orbit measurements of the XIS. The ground experiments show that charges are stably injected with the dispersion of 91eV in FWHM in a specific column for the charges equivalent to the X-ray energy of 5.1keV. This dispersion width is significantly smaller than that of the X-ray events of 113eV (FWHM) at approximately the same energy. The amount of charge loss during transfer in a specific column, which is measured with the charge injection capability, is consistent with that measured with the calibration source. These results indicate that the charge injection technique can accurately measure column-dependent charge losses rather than the calibration sources. The column-to-column CTI correction to the calibration source spectra significantly reduces the line widths compared to those with a column-averaged CTI correction (from 193eV to 173eV in FWHM on an average at the time of one year after the launch). In addition, this method significantly reduces the low energy tail in the line profile of the calibration source spectrum.Comment: Paper contains 18 figures and 15 tables. Accepted for publication in PAS

    A Prospective Pilot Study to Identify a Myocarditis Cohort who may Safely Resume Sports Activities 3 Months after Diagnosis

    Get PDF
    International cardiovascular society recommendations to return to sports activities following acute myocarditis are based on expert consensus in the absence of prospective studies. We prospectively enrolled 30 patients with newly diagnosed myocarditis based on clinical parameters, laboratory measurements and cardiac magnetic resonance imaging with mildly reduced or pre served left ventricular ejection fraction (LVEF) with a follow-up of 12 months. Cessation of physical activity was recommended for 3 months. The average age was 35 (19–80) years with 73% male patients. One case of non-sustained ventricular tachycardia was recorded during 48-h-Holter electrocardiogram. Except for this case, all patients were allowed to resume physical exercise after 3 months. At 6- (n = 26) and 12-month (n = 19) follow-up neither cardiac events nor worsening LVEF were recorded. The risk of cardiac events at 1 year after diagnosis of myocarditis appears to be low after resumption of exercise after 3 months among patients who recover from acute myocarditis

    The Advanced LIGO Photon Calibrators

    Get PDF
    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of 101810^{-18} m/Hz\sqrt{\textrm{Hz}} with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure

    Limits of Abductivism About Logic

    Get PDF
    I argue against abductivism about logic, which is the view that rational theory choice in logic happens by abduction. Abduction cannot serve as a neutral arbiter in many foundational disputes in logic because, in order to use abduction, one must first identify the relevant data. Which data one deems relevant depends on what I call one's conception of logic. One's conception of logic is, however, not independent of one's views regarding many of the foundational disputes that one may hope to solve by abduction

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure
    corecore