1,386 research outputs found
Anomalous accelerations of the Pageos spacecraft
Anomalous accelerations of Pageos satellite and application of theory to predict perturbations in mean motio
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study
Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations
Calibration of the second-generation LIGO interferometric gravitational-wave
detectors employs a method that uses injected periodic modulations to track and
compensate for slow temporal variations in the differential length response of
the instruments. These detectors utilize feedback control loops to maintain
resonance conditions by suppressing differential arm length variations. We
describe how the sensing and actuation functions of these servo loops are
parameterized and how the slow variations in these parameters are quantified
using the injected modulations. We report the results of applying this method
to the LIGO detectors and show that it significantly reduces systematic errors
in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version
of an article published in Classical and Quantum Gravity. IOP Publishing Ltd
is not responsible for any errors or omissions in this version of the
manuscript or any version derived from i
Recommended from our members
The Stardust – a successful encounter with the remarkable comet Wild 2
On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did TOF mass spectrometry
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
Reconstructing the calibrated strain signal in the Advanced LIGO detectors
Advanced LIGO's raw detector output needs to be calibrated to compute
dimensionless strain h(t). Calibrated strain data is produced in the time
domain using both a low-latency, online procedure and a high-latency, offline
procedure. The low-latency h(t) data stream is produced in two stages, the
first of which is performed on the same computers that operate the detector's
feedback control system. This stage, referred to as the front-end calibration,
uses infinite impulse response (IIR) filtering and performs all operations at a
16384 Hz digital sampling rate. Due to several limitations, this procedure
currently introduces certain systematic errors in the calibrated strain data,
motivating the second stage of the low-latency procedure, known as the
low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses
finite impulse response (FIR) filtering to apply corrections to the output of
the front-end calibration. It applies time-dependent correction factors to the
sensing and actuation components of the calibrated strain to reduce systematic
errors. The gstlal calibration pipeline is also used in high latency to
recalibrate the data, which is necessary due mainly to online dropouts in the
calibrated data and identified improvements to the calibration models or
filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table
Inference of the cosmological parameters from gravitational waves: application to second generation interferometers
The advanced world-wide network of gravitational waves (GW) observatories is
scheduled to begin operations within the current decade. Thanks to their
improved sensitivity, they promise to yield a number of detections and thus to
open a new observational windows for astronomy and astrophysics. Among the
scientific goals that should be achieved, there is the independent measurement
of the value of the cosmological parameters, hence an independent test of the
current cosmological paradigm. Due to the importance of such task, a number of
studies have evaluated the capabilities of GW telescopes in this respect.
However, since GW do not yield information about the source redshift, different
groups have made different assumptions regarding the means through which the GW
redshift can be obtained. These different assumptions imply also different
methodologies to solve this inference problem. This work presents a formalism
based on Bayesian inference developed to facilitate the inclusion of all
assumptions and prior information about a GW source within a single data
analysis framework. This approach guarantees the minimisation of information
loss and the possibility of including naturally event-specific knowledge (such
as the sky position for a Gamma Ray Burst - GW coincident observation) in the
analysis. The workings of the method are applied to a specific example, loosely
designed along the lines of the method proposed by Schutz in 1986, in which one
uses information from wide-field galaxy surveys as prior information for the
location of a GW source. I show that combining the results from few tens of
observations from a network of advanced interferometers will constrain the
Hubble constant to an accuracy of % at 95% confidence.Comment: 13 pages, 25 figures. Accepted for publication in Phys. Rev.
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
- …