1,386 research outputs found

    Anomalous accelerations of the Pageos spacecraft

    Get PDF
    Anomalous accelerations of Pageos satellite and application of theory to predict perturbations in mean motio

    Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts

    Get PDF
    Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study

    How Nitrification Inhibitors Perform in Kansas (1974)

    Get PDF

    Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations

    Get PDF
    Calibration of the second-generation LIGO interferometric gravitational-wave detectors employs a method that uses injected periodic modulations to track and compensate for slow temporal variations in the differential length response of the instruments. These detectors utilize feedback control loops to maintain resonance conditions by suppressing differential arm length variations. We describe how the sensing and actuation functions of these servo loops are parameterized and how the slow variations in these parameters are quantified using the injected modulations. We report the results of applying this method to the LIGO detectors and show that it significantly reduces systematic errors in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version of an article published in Classical and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    Get PDF
    Advanced LIGO's raw detector output needs to be calibrated to compute dimensionless strain h(t). Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector's feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table

    Inference of the cosmological parameters from gravitational waves: application to second generation interferometers

    Full text link
    The advanced world-wide network of gravitational waves (GW) observatories is scheduled to begin operations within the current decade. Thanks to their improved sensitivity, they promise to yield a number of detections and thus to open a new observational windows for astronomy and astrophysics. Among the scientific goals that should be achieved, there is the independent measurement of the value of the cosmological parameters, hence an independent test of the current cosmological paradigm. Due to the importance of such task, a number of studies have evaluated the capabilities of GW telescopes in this respect. However, since GW do not yield information about the source redshift, different groups have made different assumptions regarding the means through which the GW redshift can be obtained. These different assumptions imply also different methodologies to solve this inference problem. This work presents a formalism based on Bayesian inference developed to facilitate the inclusion of all assumptions and prior information about a GW source within a single data analysis framework. This approach guarantees the minimisation of information loss and the possibility of including naturally event-specific knowledge (such as the sky position for a Gamma Ray Burst - GW coincident observation) in the analysis. The workings of the method are applied to a specific example, loosely designed along the lines of the method proposed by Schutz in 1986, in which one uses information from wide-field galaxy surveys as prior information for the location of a GW source. I show that combining the results from few tens of observations from a network of advanced interferometers will constrain the Hubble constant H0H_0 to an accuracy of 45\sim 4 - 5% at 95% confidence.Comment: 13 pages, 25 figures. Accepted for publication in Phys. Rev.

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave
    corecore