1,787 research outputs found
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor
We describe measurements of the rotational component of teleseismic surface
waves using an inertial high-precision ground-rotation-sensor installed at the
LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad at 50 mHz and a translational coupling of less than 1 rad/m
enabling translation-free measurement of small rotations. We present
observations of the rotational motion from Rayleigh waves of six teleseismic
events from varied locations and with magnitudes ranging from M6.7 to M7.9.
These events were used to estimate phase dispersion curves which shows
agreement with a similar analysis done with an array of three STS-2
seismometers also located at LHO
Influence of Alloying upon Grain-Boundary Creep
Grain-boundary displacement, occurring in bicrystals during creep at elevated temperature (350 degrees c), has been measured as a function of the copper content (0.1 to 3 percent) in a series of aluminum-rich aluminum-copper solid-solution alloys. The minimums in stress and temperature, below which grain-boundary motion does not occur, increase regularly with the copper content as would be expected if recovery is necessary for movement. Otherwise, the effects, if any, of the copper solute upon grain-boundary displacement and its rate are too small for identification by the experimental technique employed. It was shown, additionally, that grain-boundary displacement appears regular and proceeds at a constant rate if observed parallel to the stress axis, whereas the motion is seen to occur in a sequence of surges and the rate to diminish with time if the observations are made perpendicular to the stress axis
Tethered subsatellite study
The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended
Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations
Calibration of the second-generation LIGO interferometric gravitational-wave
detectors employs a method that uses injected periodic modulations to track and
compensate for slow temporal variations in the differential length response of
the instruments. These detectors utilize feedback control loops to maintain
resonance conditions by suppressing differential arm length variations. We
describe how the sensing and actuation functions of these servo loops are
parameterized and how the slow variations in these parameters are quantified
using the injected modulations. We report the results of applying this method
to the LIGO detectors and show that it significantly reduces systematic errors
in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version
of an article published in Classical and Quantum Gravity. IOP Publishing Ltd
is not responsible for any errors or omissions in this version of the
manuscript or any version derived from i
Reconstructing the calibrated strain signal in the Advanced LIGO detectors
Advanced LIGO's raw detector output needs to be calibrated to compute
dimensionless strain h(t). Calibrated strain data is produced in the time
domain using both a low-latency, online procedure and a high-latency, offline
procedure. The low-latency h(t) data stream is produced in two stages, the
first of which is performed on the same computers that operate the detector's
feedback control system. This stage, referred to as the front-end calibration,
uses infinite impulse response (IIR) filtering and performs all operations at a
16384 Hz digital sampling rate. Due to several limitations, this procedure
currently introduces certain systematic errors in the calibrated strain data,
motivating the second stage of the low-latency procedure, known as the
low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses
finite impulse response (FIR) filtering to apply corrections to the output of
the front-end calibration. It applies time-dependent correction factors to the
sensing and actuation components of the calibrated strain to reduce systematic
errors. The gstlal calibration pipeline is also used in high latency to
recalibrate the data, which is necessary due mainly to online dropouts in the
calibrated data and identified improvements to the calibration models or
filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table
- …