1,265 research outputs found

    Anomalous accelerations of the Pageos spacecraft

    Get PDF
    Anomalous accelerations of Pageos satellite and application of theory to predict perturbations in mean motio

    Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations

    Get PDF
    Calibration of the second-generation LIGO interferometric gravitational-wave detectors employs a method that uses injected periodic modulations to track and compensate for slow temporal variations in the differential length response of the instruments. These detectors utilize feedback control loops to maintain resonance conditions by suppressing differential arm length variations. We describe how the sensing and actuation functions of these servo loops are parameterized and how the slow variations in these parameters are quantified using the injected modulations. We report the results of applying this method to the LIGO detectors and show that it significantly reduces systematic errors in their calibrated outputs.Comment: 13 pages, 8 figures. This is an author-created, un-copyedited version of an article published in Classical and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Physics of reverse annealing in high-resistivity Chandra ACIS CCDs

    Full text link
    After launch, the Advanced CCD Imaging Spectrometer (ACIS), a focal plane instrument on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. An effect of the damage was to increase the charge transfer inefficiency (CTI) of the front illuminated CCDs. As part of the initial damage assessment, the focal plane was warmed from the operating temperature of -100C to +30C which unexpectedly further increased the CTI. We report results of ACIS CCD irradiation experiments in the lab aimed at better understanding this reverse annealing process. Six CCDs were irradiated cold by protons ranging in energy from 100 keV to 400 keV, and then subjected to simulated bakeouts in one of three annealing cycles. We present results of these lab experiments, compare them to our previous experiences on the ground and in flight, and derive limits on the annealing time constants.Comment: 9 pages, to appear in Proc. SPIE 7021, "High Energy, Optical and Infrared Detectors for Astronomy

    Performance of the Charge Injection Capability of Suzaku XIS

    Full text link
    A charge injection technique is applied to the X-ray CCD camera, XIS (X-ray Imaging Spectrometer) onboard Suzaku. The charge transfer inefficiency (CTI) in each CCD column (vertical transfer channel) is measured by the injection of charge packets into a transfer channel and subsequent readout. This paper reports the performances of the charge injection capability based on the ground experiments using a radiation damaged device, and in-orbit measurements of the XIS. The ground experiments show that charges are stably injected with the dispersion of 91eV in FWHM in a specific column for the charges equivalent to the X-ray energy of 5.1keV. This dispersion width is significantly smaller than that of the X-ray events of 113eV (FWHM) at approximately the same energy. The amount of charge loss during transfer in a specific column, which is measured with the charge injection capability, is consistent with that measured with the calibration source. These results indicate that the charge injection technique can accurately measure column-dependent charge losses rather than the calibration sources. The column-to-column CTI correction to the calibration source spectra significantly reduces the line widths compared to those with a column-averaged CTI correction (from 193eV to 173eV in FWHM on an average at the time of one year after the launch). In addition, this method significantly reduces the low energy tail in the line profile of the calibration source spectrum.Comment: Paper contains 18 figures and 15 tables. Accepted for publication in PAS

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave

    Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    Get PDF
    Advanced LIGO's raw detector output needs to be calibrated to compute dimensionless strain h(t). Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector's feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table

    The Advanced LIGO Photon Calibrators

    Get PDF
    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of 10−1810^{-18} m/Hz\sqrt{\textrm{Hz}} with accuracy and precision of better than 1 %.Comment: 14 pages, 19 figure

    Development of CCDs for REXIS on OSIRIS-REx

    Get PDF
    The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a 2×2 array of backilluminated 1k×1k frame transfer CCDs with a flight heritage to Suzaku and Chandra. The back surface has a thin p[superscript +]-doped layer deposited by molecular-beam epitaxy (MBE) for maximum quantum efficiency and energy resolution at low x-ray energies. The CCDs also feature an integrated optical-blocking filter (OBF) to suppress visible and near-infrared light. The OBF is an aluminum film deposited directly on the CCD back surface and is mechanically more robust and less absorptive of x-rays than the conventional free-standing aluminum-coated polymer films. The CCDs have charge transfer inefficiencies of less than 10[superscript -6], and dark current of 1e-/pixel/second at the REXIS operating temperature of –60 °C. The resulting spectral resolution is 115 eV at 2 KeV. The extinction ratio of the filter is ~10[superscript 12] at 625 nm.United States. National Aeronautics and Space Administration. Strategic Astrophysics Technology Program (Grant NNX12AF22G)United States. National Aeronautics and Space Administration (Contract NNG12FD70C)United States. National Aeronautics and Space Administration (IPR NNG12FC01I)United States. National Aeronautics and Space Administration. Strategic Astrophysics Technology Program (IPR NNH12AU04I)United States. Air Force (Contract FA8721-05-C-0002

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample
    • …
    corecore