283 research outputs found

    Large size and slow rotation of the trans-Neptunian object (225088) 2007 OR10 discovered from Herschel and K2 observations

    Get PDF
    We present the first comprehensive thermal and rotational analysis of the second most distant trans-Neptunian object (225088) 2007 OR10. We combined optical light curves provided by the Kepler space telescope -- K2 extended mission and thermal infrared data provided by the Herschel Space Observatory. We found that (225088) 2007 OR10 is likely to be larger and darker than derived by earlier studies: we obtained a diameter of d=1535^{+75}_{-225} km which places (225088) 2007 OR10 in the biggest top three trans-Neptunian objects. The corresponding visual geometric albedo is p_V=0.089^{+0.031}_{-0.009}. The light curve analysis revealed a slow rotation rate of P_rot=44.81+/-0.37 h, superseded by a very few objects only. The most likely light-curve solution is double-peaked with a slight asymmetry, however, we cannot safely rule out the possibility of having a rotation period of P_rot=22.40+/-0.18 h which corresponds to a single-peaked solution. Due to the size and slow rotation, the shape of the object should be a MacLaurin ellipsoid, so the light variation should be caused by surface inhomogeneities. Its newly derived larger diameter also implies larger surface gravity and a more likely retention of volatiles -- CH_4, CO and N_2 -- on the surface.Comment: Accepted for publication in AJ, 8 pages in emulateapj styl

    First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the 18F(p, α)15O reaction at astrophysical energies

    Get PDF
    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the 18F(p,α)15O process at low energies relevant to astrophysics via the three body reaction 2H(18F, α15 O)n. The knowledge of the 18F(p, α)15O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in 19Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the 18F(p,α)15O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effects

    CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii

    Get PDF
    Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims: We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods: We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results: We find that HD 108236 is a Sun-like star with R⋆ = 0.877 ± 0.008 R⊙, M⋆ = 0.869-0.048+0.050 M⊙, and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions: The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/646/A15

    Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N and TESS

    Get PDF
    We present a precise characterization of the TOI-561 planetary system obtained by combining previously published data with TESS and CHEOPS photometry, and a new set of 62 HARPS-N radial velocities (RVs). Our joint analysis confirms the presence of four transiting planets, namely TOI-561 b (P = 0.45 d, R = 1.42 R⊕, M = 2.0 M⊕), c (P = 10.78 d, R = 2.91 R⊕, M = 5.4 M⊕), d (P = 25.7 d, R = 2.82 R⊕, M = 13.2 M⊕), and e (P = 77 d, R = 2.55 R⊕, M = 12.6 R⊕). Moreover, we identify an additional, long-period signal (>450 d) in the RVs, which could be due to either an external planetary companion or to stellar magnetic activity. The precise masses and radii obtained for the four planets allowed us to conduct interior structure and atmospheric escape modelling. TOI-561 b is confirmed to be the lowest density (ρb = 3.8 ± 0.5 g cm-3) ultra-short period (USP) planet known to date, and the low metallicity of the host star makes it consistent with the general bulk density-stellar metallicity trend. According to our interior structure modelling, planet b has basically no gas envelope, and it could host a certain amount of water. In contrast, TOI-561 c, d, and e likely retained an H/He envelope, in addition to a possibly large water layer. The inferred planetary compositions suggest different atmospheric evolutionary paths, with planets b and c having experienced significant gas loss, and planets d and e showing an atmospheric content consistent with the original one. The uniqueness of the USP planet, the presence of the long-period planet TOI-561 e, and the complex architecture make this system an appealing target for follow-up studies

    Six transiting planets and a chain of Laplace resonances in TOI-178

    Get PDF
    Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes

    Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS

    Get PDF
    Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay. Aims: WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics. Methods: We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation. Results: We estimate the radial Love number of WASP-103b to be hf = 1.59−0.53+0.45. This is the first time that the tidal deformation is directly detected (at 3 σ) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact. Conclusions: The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system. The transit light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A52

    Asteroid Confusions with Extremely Large Telescopes

    Full text link
    Asteroids can be considered as sources of contamination of point sources and also sources of confusion noise, depending whether their presence is detected in the image or their flux is under the detection limit. We estimate that at low ecliptic latitudes, ~10,000--20,000 asteroids/sq. degree will be detected with an E-ELT like telescope, while by the end of Spitzer and Herschel missions, infrared space observatories will provide ~100,000 serendipitous asteroid detections. The detection and identification of asteroids is therefore an important step in survey astronomy.Comment: 8 pages, 4 figures, accepted by Earth, Moon and Planets, ELT Conference (Elba, 2009 Sept.) S

    Deciphering the Biology of \u3ci\u3eCryptophyllachora eurasiatica\u3c/i\u3e gen. et sp. nov., an Often Cryptic Pathogen of an Allergenic Weed, \u3ci\u3eAmbrosia artemisiifolia\u3c/i\u3e

    Get PDF
    A little known, unculturable ascomycete, referred to as Phyllachora ambrosiae, can destroy the inflorescences of Ambrosia artemisiifolia, an invasive agricultural weed and producer of highly allergenic pollen. The fungus often remains undetectable in ragweed populations. This work was conducted to understand its origin and pathogenesis, a prerequisite to consider its potential as a biocontrol agent. The methods used included light and transmission electron microscopy, nrDNA sequencing, phylogenetic analyses, artificial inoculations, and the examination of old herbarium and recent field specimens from Hungary, Korea, Ukraine and USA. The Eurasian and the North American specimens of this fungus were to represent two distinct, although closely related lineages that were only distantly related to other lineages within the Ascomycota. Consequently, we describe a new genus that includes Cryptophyllachora eurasiatica gen. et sp. nov. and C. ambrosiae comb. nov., respectively. The pathogenesis of C. eurasiaticawas shown in A. artemisiifolia. No evidence was found for either seed-borne transmission or systemic infection. Two hypotheses were developed to explain the interaction between C. eurasiatica and A. artemisiifolia: (i) as yet undetected seed-borne transmissions and latent, systemic infections; or (ii) alternative hosts
    corecore