75 research outputs found

    Pressure Regulator for a High Altitude Balloon

    Get PDF
    High altitude balloons are large latex balloons filled with gas that carry a payload to near space. Because they can travel to around 100,000 feet, they provide a convenient way to study the Earth’s atmosphere. Per Boyle’s Law, the pressure and volume of a confined gas are inversely proportional. Thus, as the balloon ascends and the atmospheric pressure decreases, the gas inside the balloon expands. This pressure difference allows the balloon to ascend, but it also causes it to continuously expand until it bursts. For some observations, one might want their balloon to remain at about the same altitude for a period of time. One way to do this is to periodically release gas from the balloon, decreasing the volume of gas in the balloon. The objective of this experiment was to design a valve with a sensor to regulate the pressure inside the balloon and in turn, prolong its flight. To do this, we designed an automated pressure valve that will be tested in the near future by way of a tethered flight

    Pressure Regulator for a High Altitude Balloon

    Get PDF
    High altitude balloons are large latex balloons filled with gas that carry a payload to near space. Because they can travel to around 100,000 feet, they provide a convenient way to study the Earth’s atmosphere. Per Boyle’s Law, the pressure and volume of a confined gas are inversely proportional. Thus, as the balloon ascends and the atmospheric pressure decreases, the gas inside the balloon expands. This pressure difference allows the balloon to ascend, but it also causes it to continuously expand until it bursts. For some observations, one might want their balloon to remain at about the same altitude for a period of time. One way to do this is to periodically release gas from the balloon, decreasing the volume of gas in the balloon. The objective of this experiment was to design a valve with a sensor to regulate the pressure inside the balloon and in turn, prolong its flight. To do this, we designed an automated pressure valve that will be tested in the near future by way of a tethered flight

    2-point statistics covariance with fewer mocks

    Get PDF
    We present an approach for accurate estimation of the covariance of 2-point correlation functions that requires fewer mocks than the standard mock-based covariance. This can be achieved by dividing a set of mocks into jackknife regions and fitting the correction term first introduced in Mohammad & Percival (2022), such that the mean of the jackknife covariances corresponds to the one from the mocks. This extends the model beyond the shot-noise limited regime, allowing it to be used for denser samples of galaxies. We test the performance of our fitted jackknife approach, both in terms of accuracy and precision, using lognormal mocks with varying densities and approximate EZmocks mimicking the DESI LRG and ELG samples in the redshift range of z = [0.8, 1.2]. We find that the Mohammad-Percival correction produces a bias in the 2-point correlation function covariance matrix that grows with number density and that our fitted jackknife approach does not. We also study the effect of the covariance on the uncertainty of cosmological parameters by performing a full-shape analysis. We find that our fitted jackknife approach based on 25 mocks is able to recover unbiased and as precise cosmological parameters as the ones obtained from a covariance matrix based on 1000 or 1500 mocks, while the Mohammad-Percival correction produces uncertainties that are twice as large. The number of mocks required to obtain an accurate estimation of the covariance for 2-point correlation function is therefore reduced by a factor of 40-60.Comment: 13 pages, 14 figures, submitted to MNRA

    Intrinsic Alignment as an RSD Contaminant in the DESI Survey

    Full text link
    We measure the tidal alignment of the major axes of Luminous Red Galaxies (LRGs) from the Legacy Imaging Survey and use it to infer the artificial redshift-space distortion signature that will arise from an orientation-dependent, surface-brightness selection in the Dark Energy Spectroscopic Instrument (DESI) survey. Using photometric redshifts to down-weight the shape-density correlations due to weak lensing, we measure the intrinsic tidal alignment of LRGs. Separately, we estimate the net polarization of LRG orientations from DESI's fiber-magnitude target selection to be of order 10^-2 along the line of sight. Using these measurements and a linear tidal model, we forecast a 0.2% fractional decrease on the quadrupole of the 2-point correlation function for projected separations of 40-80 Mpc/h. We also use a halo catalog from the Abacus Summit cosmological simulation suite to reproduce this false quadrupole.Comment: 13 pages, 13 figures. Submitted to MNRAS. For an accessible summary of this paper, see https://cmlamman.github.io/doc/fakeRSD_summary.pd

    Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data

    Get PDF
    Changing-look active galactic nuclei (CL AGNs) can be generally confirmed by the emergence (turn-on) or disappearance (turn-off) of broad emission lines (BELs), associated with a transient timescale (about 100 ∼ 5000 days) that is much shorter than predicted by traditional accretion disk models. We carry out a systematic CL AGN search by crossmatching the spectra coming from the Dark Energy Spectroscopic Instrument and the Sloan Digital Sky Survey. Following previous studies, we identify CL AGNs based on Hα, Hβ, and Mg ii at z ≤ 0.75 and Mg ii, C iii], and C iv at z > 0.75. We present 56 CL AGNs based on visual inspection and three selection criteria, including 2 Hα, 34 Hβ, 9 Mg ii, 18 C iii], and 1 C iv CL AGN. Eight cases show simultaneous appearances/disappearances of two BELs. We also present 44 CL AGN candidates with significant flux variation of BELs, but remaining strong broad components. In the confirmed CL AGNs, 10 cases show additional CL candidate features for different lines. In this paper, we find: (1) a 24:32 ratio of turn-on to turn-off CL AGNs; (2) an upper-limit transition timescale ranging from 330 to 5762 days in the rest frame; and (3) the majority of CL AGNs follow the bluer-when-brighter trend. Our results greatly increase the current CL census (∼30%) and would be conducive to exploring the underlying physical mechanism

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-Percent Survey

    Full text link
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-Percent Survey. The One-Percent Survey was one of DESI's survey validation programs conducted from April to May 2021, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r<19.5r < 19.5 magnitude-limited BGS Bright sample and 95,499 galaxies in the fainter surface brightness and color selected BGS Faint sample over z<0.6z < 0.6. We derive pSMFs from posteriors of stellar mass, MM_*, inferred from DESI photometry and spectroscopy using the Hahn et al. (2022a; arXiv:2202.01809) PRObabilistic Value-Added BGS (PROVABGS) Bayesian SED modeling framework. We use a hierarchical population inference framework that statistically and rigorously propagates the MM_* uncertainties. Furthermore, we include correction weights that account for the selection effects and incompleteness of the BGS observations. We present the redshift evolution of the pSMF in BGS as well as the pSMFs of star-forming and quiescent galaxies classified using average specific star formation rates from PROVABGS. Overall, the pSMFs show good agreement with previous stellar mass function measurements in the literature. Our pSMFs showcase the potential and statistical power of BGS, which in its main survey will observe >100×\times more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision.Comment: 25 pages, 12 figures; data used to generate figures is available at https://doi.org/10.5281/zenodo.8018936; submitted to Ap

    Detecting and Characterizing Mg II absorption in DESI Survey Validation Quasar Spectra

    Full text link
    In this paper we will present findings on the detection of Magnesium II (MgII, lambda = 2796 {\AA}, 2803 {\AA}) absorption systems observed in data from the Early Data Release (EDR) of the Dark Energy Spectroscopic Instrument (DESI). DESI is projected to obtain spectroscopy of approximately 3 million quasars (QSOs), of which over 99% are anticipated to be found at redshifts greater than z < 0.3, such that DESI would be able to observe an associated or intervening Mg II absorber illuminated by the background QSO. We have developed an autonomous supplementary spectral pipeline that detects such systems through an initial line-fitting process and then confirms line properties using a Markov Chain Monte Carlo (MCMC) sampler. Based upon both a visual inspection and the reanalysis of coadded observations, we estimate this sample of absorption systems to have a completeness of 82.56% and purity of 99.08%. As the spectra in which Mg II systems are detected are the result of coadding multiple observations, we can determine the sensitivity, and therefore completeness, of the sample by searching for known Mg II systems in coadded data with fewer observations (and therefore lower signal-to-noise). From a parent catalog containing 83,207 quasars, we detect a total of 23,921 Mg II absorption systems following a series of quality cuts. Extrapolating from this occurrence rate of 28.75% implies a catalog at the completion of the five-year DESI survey that contains over eight hundred thousand Mg II absorbers. The cataloging of these systems will enable significant further research as they carry information regarding circumgalactic medium (CGM) environments, the distribution of intervening galaxies, and the growth of metallicity across the redshift range 0.3 < z < 2.5.Comment: 12 pages, 7 figure

    Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation function for Early DESI data

    Get PDF
    We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple extended Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC.Comment: 19 pages, 1 figure. Code available at https://github.com/oliverphilcox/RascalC, table and figure data available at https://dx.doi.org/10.5281/zenodo.775063

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey

    Get PDF
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-percent Survey. The One-percent Survey was one of DESI’s survey validation programs conducted from 2021 April to May, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r 100 × more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision

    Long-term follow-up observations of extreme coronal line emitting galaxies

    Get PDF
    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the nonrecurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines. The remaining two objects had been classified as active galactic nuclei (AGN) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal-line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.Comment: Submitted to MNRAS. 33 pages, 15 figure
    corecore