104 research outputs found

    Нелокальная дисперсия и ультразвуковое туннелирование в материалах с градиентной структурой

    Get PDF
    The non-local dispersion of longitudinal ultrasonic waves is shown to appear in the heterogeneous solids due to continuous spatial distributions of their density and/or elasticity (gradient solids). This dispersion gives rise to the diversity of ultrasonic transmittance spectra, including the broadband total reflectance plateau, total transmission and tunneling spectral ranges. The ultrasonic wave fields in gradient solids, formed by interference of forward and backward travelling waves as well as by evanescent and antievanescent modes are examined in the framework of exactly solvable models of media with continuously distributed density and elasticity. Examples of transmittance spectra for both metal and semiconductor gradient structures are presented, and the generality of concept of artificial non-local dispersion for gradient composite materials is considered. It should also be noted that the wave equation for acoustic waves in gradient media with a constant elasticity modulus and a certain predetermined density distribution reduces to an equation describing the electromagnetic wave propagation in transparent dielectric media. This formal similarity shows that the concept of nonlocal dispersion is common for both optical and acoustic phenomena, which opens the way to the direct use of physical concepts and exact mathematical solutions, developed for gradient optics, to solve the corresponding acoustic problems.Показано, что в материалах с пространственным распределением (градиентом) плотности и/или упругости имеет место нелокальная дисперсия продольных ультразвуковых волн. Эта дисперсия приводит к возникновению ультразвуковых спектров, таких как широкодиапазонное плато полного отражения, туннельные спектральные области и области полного пропускания. В рамках точно решаемых моделей сред с непрерывно распределенными плотностью и упругостью исследованы ультразвуковые волны в градиентных материалах, сформированные интерференцией прямых и обратных волн, а также затухающими и незатухающими модами. Приведены примеры спектров пропускания как для металлических, так и для полупроводниковых градиентных структур, а также рассмотрена общая концепция искусственной нелокальной дисперсии для градиентных композитных материалов. Необходимо заметить, что волновое уравнение для акустических волн в градиентных средах с постоянным модулем упругости и определенным заданным распределением плотности сводится к уравнению, описывающему распространение электромагнитных волн в прозрачных диэлектрических средах. Это формальное сходство свидетельствует о том, что концепция нелокальной дисперсии является общей как для оптических, так и для акустических явлений, что позволяет напрямую использовать разработанные для градиентной оптики физические принципы и точные математические решения при реализации соответствующих акустических задач

    Astrometric Control of the Inertiality of the Hipparcos Catalog

    Full text link
    Based on the most complete list of the results of an individual comparison of the proper motions for stars of various programs common to the Hipparcos catalog, each of which is an independent realization of the inertial reference frame with regard to stellar proper motions, we redetermined the vector ω\omega of residual rotation of the ICRS system relative to the extragalactic reference frame. The equatorial components of this vector were found to be the following: ωx=+0.04±0.15\omega_x = +0.04\pm 0.15 mas yr1^{-1}, ωy=+0.18±0.12\omega_y = +0.18\pm 0.12 mas yr1^{-1}, and ωz=0.35±0.09\omega_z = -0.35\pm 0.09 mas yr1^{-1}.Comment: 8 pages, 1 figur

    Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars

    Get PDF
    We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas / bidomain LiNbO3 long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y+128o-cut LiNbO3 were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the “head-to-head” and “tail-to-tail” type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V/cm∙Oe, corresponding to a conversion ratio of 27.5 V/Oe, were obtained under resonance conditions at frequencies of the order of 100 Hz in magnetic bias fields as low as 2 Oe. Equivalent magnetic noise spectral densities down to 120 pT/Hz1/2 at 10 Hz and to 68 pT/Hz1/2 at a resonance frequency as low as 81 Hz were obtained for the 45 mm long cantilever bar with a tip proof mass of 1.2 g. In the same composite without any added mass the magnetic noise was shown to be as low as 37 pT/Hz1/2 at a resonance frequency of 244 Hz and 1.2 pT/Hz1/2 at 1335 Hz in a fixed cantilever and free vibrating regimes, respectively. A simple unidimensional dynamic model predicted the possibility to drop the low-frequency magnetic noise by more than one order of magnitude in case all the extrinsic noise sources are suppressed, especially those related to external vibrations, and the thickness ratio of the magnetic-to-piezoelectric phases is optimized. Thus, we have shown that such systems might find use in simple and sensitive room-temperature low-frequency magnetic sensors, e.g., for biomedical applications.publishe

    Prokaryote genome fluidity is dependent on effective population size

    Get PDF
    Many prokaryote species are known to have fluid genomes, with different strains varying markedly in accessory gene content through the combined action of gene loss, gene gain via lateral transfer, as well as gene duplication. However, the evolutionary forces determining genome fluidity are not yet well understood. We here for the first time systematically analyse the degree to which this distinctive genomic feature differs between bacterial species. We find that genome fluidity is positively correlated with synonymous nucleotide diversity of the core genome, a measure of effective population size Ne. No effects of genome size, phylogeny or homologous recombination rate on genome fluidity were found. Our findings are consistent with a scenario where accessory gene content turnover is for a large part dictated by neutral evolution

    Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane

    Full text link
    High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K. Microscopic and X-ray diffraction results showed that Ni nanowires are homogeneous, with smooth walls and mostly single-crystalline materials with a 220-oriented growth direction. The magnetic properties of the samples (coercivity and squareness) depend more on the length of the nanowires and the packing factor (the volume fraction of the nanowires in the membrane). It is shown that the dipolar interaction changes the demagnetizing field during a reversal magnetization of the Ni nanowires, and the general effective field of magnetostatic uniaxial shape anisotropy. The effect of magnetostatic interaction between ultra-long nanowires (with an aspect ratio of >500) in samples with a packing factor of ≥37% leads to a reversal magnetization state, in which a “curling”-type model of nanowire behavior is realized. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: An.T. (Andrei Turutin) acknowledges the financial support of the Russian Science Foundation (Grant No. 19-79-30062) in part of the experimental work. A.K. (Alexander Kislyuk) and I.K. (Ilya Kubasov) acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation as a part of the State Assignment (basic research, Project No. 0718-2020-0031 “New magnetoelectric composite materials based on oxide ferroelectrics having an ordered domain structure: production and properties”) in part of the XRD study

    Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane

    Full text link
    High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K. Microscopic and X-ray diffraction results showed that Ni nanowires are homogeneous, with smooth walls and mostly single-crystalline materials with a 220-oriented growth direction. The magnetic properties of the samples (coercivity and squareness) depend more on the length of the nanowires and the packing factor (the volume fraction of the nanowires in the membrane). It is shown that the dipolar interaction changes the demagnetizing field during a reversal magnetization of the Ni nanowires, and the general effective field of magnetostatic uniaxial shape anisotropy. The effect of magnetostatic interaction between ultra-long nanowires (with an aspect ratio of >500) in samples with a packing factor of ≥37% leads to a reversal magnetization state, in which a “curling”-type model of nanowire behavior is realized. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: An.T. (Andrei Turutin) acknowledges the financial support of the Russian Science Foundation (Grant No. 19-79-30062) in part of the experimental work. A.K. (Alexander Kislyuk) and I.K. (Ilya Kubasov) acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation as a part of the State Assignment (basic research, Project No. 0718-2020-0031 “New magnetoelectric composite materials based on oxide ferroelectrics having an ordered domain structure: production and properties”) in part of the XRD study

    Magnetoelectric metglas/bidomain y + 140°-cut lithium niobate composite for sensing fT magnetic fields

    Get PDF
    We investigated the magnetoelectric properties of a new laminate composite material based on y+140°-cut congruent lithium niobate piezoelectric plates with an antiparallel polarized “head-to-head” bidomain structure and metglas used as a magnetostrictive layer. A series of bidomain lithium niobate crystals were prepared by annealing under conditions of Li2O outdiffusion from LiNbO3 with a resultant growth of an inversion domain. The measured quasi-static magnetoelectric coupling coefficient achieved |αE31| = 1.9 V·(cm·Oe)–1. At a bending resonance frequency of 6862 Hz, we found a giant |αE31| value up to 1704 V·(cm·Oe)–1. Furthermore, the equivalent magnetic noise spectral density of the investigated composite material was only 92 fT/Hz1/2, a record value for such a low operation frequency. The magnetic-field detection limit of the laminated composite was found to be as low as 200 fT in direct measurements without any additional shielding from external noises.publishe

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein domain classification is an important step in metagenomic annotation. The state-of-the-art method for protein domain classification is profile HMM-based alignment. However, the relatively high rates of insertions and deletions in homopolymer regions of pyrosequencing reads create frameshifts, causing conventional profile HMM alignment tools to generate alignments with marginal scores. This makes error-containing gene fragments unclassifiable with conventional tools. Thus, there is a need for an accurate domain classification tool that can detect and correct sequencing errors.</p> <p>Results</p> <p>We introduce HMM-FRAME, a protein domain classification tool based on an augmented Viterbi algorithm that can incorporate error models from different sequencing platforms. HMM-FRAME corrects sequencing errors and classifies putative gene fragments into domain families. It achieved high error detection sensitivity and specificity in a data set with annotated errors. We applied HMM-FRAME in Targeted Metagenomics and a published metagenomic data set. The results showed that our tool can correct frameshifts in error-containing sequences, generate much longer alignments with significantly smaller E-values, and classify more sequences into their native families.</p> <p>Conclusions</p> <p>HMM-FRAME provides a complementary protein domain classification tool to conventional profile HMM-based methods for data sets containing frameshifts. Its current implementation is best used for small-scale metagenomic data sets. The source code of HMM-FRAME can be downloaded at <url>http://www.cse.msu.edu/~zhangy72/hmmframe/</url> and at <url>https://sourceforge.net/projects/hmm-frame/</url>.</p
    corecore