31 research outputs found

    Stochasticity of flow through microcirculation as a regulator of oxygen delivery

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Observations of microcirculation reveal that the blood flow is subject to interruptions and resumptions. Accepting that blood randomly stops and resumes, one can show that the randomness could be a powerful means to match oxygen delivery with oxygen demand.</p> <p>Method</p> <p>The ability of the randomness to regulate oxygen delivery is based on two suppositions: (a) the probability for flow to stop does not depend on the time of uninterrupted flow, thus the number of interruptions of flow follows a Poisson distribution; (b) the probability to resume the flow does not depend on the time for flow being interrupted; meaning that time spent by erythrocytes at rest follows an exponential distribution. Thus the distribution of the time to pass an organ is a compound Poisson distribution. The Laplace transform of the given distribution gives the fraction of oxygen that passes the organ.</p> <p>Result</p> <p>Oxygen delivery to the tissues directly depends on characteristics of the irregularity of the flow through microcirculation.</p> <p>Conclusion</p> <p>By variation of vasomotion activity it is possible to change delivery of oxygen to a tissue by up to 8 times.</p

    Site-Specific Bioconjugation of a Murine Dihydrofolate Reductase Enzyme by Copper(I)-Catalyzed Azide-Alkyne Cycloaddition with Retained Activity

    Get PDF
    Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA) containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR), in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I)-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activityope

    Functional imaging using fluorine ((19)F) MR methods: basic concepts

    Get PDF
    Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine ((19)F) MRI in biomedical research to study functional changes during disease states. (19)F MRI represents an instrumental tool for the quantification of exogenous (19)F substances in vivo. One of the major benefits of (19)F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous (19)F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of (19)F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis

    Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance&nbsp;imaging.

    No full text
    Fluorine-19 magnetic resonance imaging ((19)F MRI) probes enable quantitative in&nbsp;vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the (19)F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (&lt;20%) and superior MRI properties. Moreover, the (19)F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting (19)F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T

    Degradable Conjugates from Oxanorbornadiene Reagents

    No full text
    Oxanorbornadienedicarboxylate (OND) reagents were explored for purposes of binding and releasing drugs from serum albumins as representative macromolecular carriers. Being highly reactive Michael acceptors, ONDs form adducts with thiols and amines, which then undergo retro-Diels–Alder fragmentation. A study of more than 30 model adducts revealed a number of modifications that can be used to influence adduct stability. For the most reactive OND linkers, the labeling of the single available bovine serum albumin (BSA) cysteine residue was complete within minutes at a mid-micromolar concentration of reactants. While a selectivity of greater than 1000-fold for thiol over amine was observed with model amino acids, the labeling of protein amines with ONDs is fast enough to be practical, as demonstrated by the reaction with thiol-depleted BSA. The OND–amine adducts were found to be up to 15 times more stable than OND–thiol adducts, and to be sensitive to acid by virtue of a stereochemically dependent acceleration of cycloreversion. The release rate of fluorescent cargo from serum albumins was tuned by selecting the coupling partners: the available half-lives ranged from 40 min to 7 days at 37 °C. Such versatility of release profiles from protein carriers, controlled by the nature of the OND linkage, is a useful addition to the drug delivery toolbox

    Relative Performance of Alkynes in Copper-Catalyzed Azide–Alkyne Cycloaddition

    No full text
    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions
    corecore