1,297 research outputs found
BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison
Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'
Monte Carlo Simulation of Secondary Electrons in Solids and its Application for Scanning Electron Microscopy
A new Monte Carlo calculation model is introduced to simulate not only the primary electron behavior but also the secondary electron cascade in a specimen bombarded with an electron beam. Either the primary or the generated electron in a specimen having energy greater than 0.1 keV is defined as a fast electron and the single scattering model is used in the simulation which employs the Mott elastic scattering cross section and the Rao Sahib-Wittry energy loss equation. The electron having energy smaller than 0.1 keV is defined as a slow electron and the cascade model is used which takes into account the classical binary collision with the conduction electrons. The performance of this simulation is verified in comparison with experiments for energy and angular distributions of slow secondary electrons (\u3c50eV). Then, this simulation is applied in a discussion of the quantitative signal variation of the secondary and the backscattered electrons depending on a specimen surface topography. The maximum intensity of the secondary electron signal is obtained where the scanning electron beam reaches around 1nm beside the top edge of a surface step made of Cu with the vertical side wall of 500nm in height
A Simulation of Secondary Electron Trajectories in Solids
A Monte Carlo calculation model is introduced to simulate not only the primary electron behavior but also the secondary electron cascade in a specimen bombarded with an electron beam. Electrons having energy greater than 0.1keV are treated as fast electrons and the single scattering Monte Carlo model is adopted. Electrons having energy smaller than 0.1keV are treated as slow electrons and the electron cascade Monte Carlo model is used. The calculated results for the energy distribution of secondary electrons, and primary electron energy dependence of the total secondary yield and the backscattering yield are in good agreement with experimental results
Economic probes of mental function and the extraction of computational phenotypes
AbstractEconomic games are now routinely used to characterize human cognition across multiple dimensions. These games allow for effective computational modeling of mental function because they typically come equipped with notions of optimal play, which provide quantitatively prescribed target functions that can be tracked throughout an experiment. The combination of these games, computational models, and neuroimaging tools open up the possibility for new ways to characterize normal cognition and associated brain function. We propose that these tools may also be used to characterize mental dysfunction, such as that found in a range of psychiatric illnesses. We describe early efforts using a multi-round trust game to probe brain responses associated with healthy social exchange and review how this game has provided a novel and useful characterization of autism spectrum disorder. Lastly, we use the multi-round trust game as an example to discuss how these kinds of games could produce novel bases for representing healthy behavior and brain function and thus provide objectively identifiable subtypes within a broad spectrum of mental function
Dynamical mean field theory of optical third harmonic generation
We formulate the third harmonic generation (THG) within the dynamical mean
field theory (DMFT) approximation of the Hubbard model. In the limit of large
dimensions, where DMFT becomes exact, the vertex corrections to current
vertices are identically zero, and hence the calculation of the THG spectrum
reduces to a time-ordered convolution, followd by appropriate analytic
continuuation. We present the typical THG spectrum of the Hubbard model
obtained by this method. Within our DMFT calculation, we observe a nontrivial
approximate {\em scaling} function describing the THG spectra in all Mott
insulators, independent of the gap magnitude.Comment: 4 eps figure
Comment on "Origin of Giant Optical Nonlinearity in Charge-Transfer--Mott Insulators: A New Paradigm for Nonlinear Optics"
Comment on Phys. Rev. Lett. 86, 2086 (2001)Comment: 1 page, 1 eps figur
Articulating social welfare PhD program rubrics toward sustainable assessment
The Myron B. Thompson School of Social Work (SW) PhD program at the University of Hawaiʻi at Mānoa currently has 16 students and 10 graduate faculty members. Developing and implementing sustainable PhD assessment plans are necessary to reflect student learning and curriculum improvements. Articulating the PhD program rubrics into a program-level assessment plan is imperative. The SW PhD program has developed seven Student Learning Outcomes (SLOs), assessable outcomes, and a curriculum map. In Fall of 2015, the PhD program committee revisited the SLOs and made revisions in alignment with the sustainable assessment plan for the program as a foundational step for creating program rubrics. The committee developed program rubrics for benchmarks—(a) specialization, (b) comprehensive examination (i.e., dissertation proposal), and (c) final exam (i.e., dissertation defense)—that are tied to the SLOs. The committee began collecting data using developed rubrics in Spring 2016 as a pilot to gain additional clarity on the rubrics in order to make them efficient and manageable as key parts of PhD program curriculum. During the process of developing the rubrics, the PhD committee collaborated to facilitate the assessment planning process. During this assessment process, the committee has utilized existing materials and sources, such as student products (e.g., dissertation proposal), evaluation criteria (e.g., dissertation evaluation), yearly advising sessions, and student reviews materials. This poster presents the strategies utilized in the pilot project as well as lessons learned through the project
Charge dynamics of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} as a correlated electron system with the ideal tetragonal lattice
We report the reflectivity and the resistivity measurement of
Ca_{2-x}Na_{x}CuO_{2}Cl_{2} (CNCOC), which has a single-CuO2-plane lattice with
no orthorhombic distortion. The doping dependence of the in-plane optical
conductivity spectra for CNCOC is qualitatively the same to those of other
cuprates, but a slight difference between CNCOC and LSCO, i.e., the absence of
the 1.5 eV peak in CNCOC, can be attributed to the smaller charge-stripe
instability in CNCOC. The temperature dependence of the optical onductivity
spectra of CNCOC has been analyzed both by the two-component model
(Drude+Lorentzian) and by the one-component model (extended-Drude analysis).
The latter analysis gives a universal trend of the scattering rate Gamma(omega)
with doping. It was also found that Gamma(omega) shows a saturation behavior at
high frequencies, whose origin is the same as that of resistivity saturation at
high temperatures.Comment: 8 pages, 11 figures, to be published in Phys. Rev.
Nonlinear Optical Response in two-dimensional Mott Insulators
We study the third-order nonlinear optical susceptibility and
photoexcited states of two-dimensional (2D) Mott insulators by using an
effective model in the strong-coupling limit of a half-filled Hubbard model. In
the numerically exact diagonalization calculations on finite-size clusters, we
find that the coupling of charge and spin degrees of freedom plays a crucial
role in the distribution of the dipole-allowed states with odd parity and the
dipole-forbidden states with even parity in the photoexcited states. This is in
contrast with the photoexcited states in one dimension, where the charge and
spin degrees of freedom are decoupled. In the third-harmonic generation (THG)
spectrum, main contribution is found to come from the process of three-photon
resonance associated with the odd-parity states. As a result, the two-photon
resonance process is less pronounced in the THG spectrum. The calculated THG
spectrum is compared with recent experimental data. We also find that
with cross-polarized configuration of pump and probe photons shows
spectral distributions similar to with co-polarized configuration,
although the weight is small. These findings will help the analyses of the
experimental data of in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX
- …