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MONTE CARLO SIMULATION OF SECONDARY ELECTRONS IN SOLIDS AND ITS 
APPLICATION FOR SCANNING ELECTRON MICROSCOPY 

M. Kotera, T. Kishida, and H. Suga 

Department of Electronic Engineering 
Osaka Institute of Technology 
Omiya, Asahi-ku, Osaka, Japan 

Abstract 

A new Monte Carlo calculation model is intro
duced to simulaLe not only t.hc primary electron 
behavior but also the secondary electron cascade 
in a specimen bombarded wi Lh an electron beam. 
Either the primary or the generated electron in a 
specimen having energy greater than O.lkeV is 
defined as a fast electron and the single scatter
ing model is used in the simulation which employs 
the Mott elastic scattering cross section and the 
Rao Sahib-Wittry ene r-gy loss equation. The 
electron having energy smaller than O.lkeV is 
defined as a slow electron and the cascade model 
is used which takes into account the classical 
binary collision with Lhe conducLion electrons. 
The performance of this simulation is verified in 
comparison with experiments for energy and angular 
distributions of slow secondary electrons (<50eV). 
Then, this simulation is applied in a discussion 
of the quantitative signal variation of the sec
ondary and the backscattered electrons depending 
on a specimen surface topography. The maxi mum 
intensity of the secondary electron signal is 
obtained where the scanning electron beam reaches 
around 1nm beside the top edge of a surface step 
made of Cu with the vertical side wall of 500nm in 
height. 

KEY .l'/ORDS: Secondary clectr·on trajectory, Primary 
electron trajectory, Monte Carlo simulation, 
Electron cascade, The Mott cross section, Evalua
tion of topographic contrast. 
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ln._t_roduct ion 

Image contrast of the scanning electron 
microscope (SEM) is produced arising from differ
ences in emission yield of the secondary(SE) or 
the backscattered electrons(BSE) due to local 
features of topography, composition, electric 
field, etc. at the specimen surface. Por quanti
tative analyses of the specimen feature using the 
contrast, it is necessary to have a deep under
standing of the processes these electrons undergo 
in the specimen. 

The theoretical studies have been made of 
processes involving SE generation, transport, and 
escape from the specimen's surface. The theories 
may be divided into four levels of approximation. 
The first assumes a simple empirical equation for 
SE emission and uses adj us table parameters for 
each material.[l,9,36,43] The second assumes an 
analytical model for the geometry of the electron 
diffusion, and yields the energy or the spatial 
distribution of SE emission.[14,15,24,35,38,39) 
The third uses mathematical expressions for 
generation and escape and employs the Bal tzmann 
transport equation, t.o obtain several physical 
quantities of SE.[2,3,5,6,7,44,45,53] The 
fourth uses a simulation of electron trajectories 
in the specimen with Monte Carlo calculation. 
Every probability distribution to express each 
phenomenon electrons undergo in the specimen can 
be taken into account in the calculation. After 
calculation of a large number of trajectories the 
results are summed to obtain statistical values 
in various physical quantities of SE.[13,17,18, 
19,21,26,34] The theories become progressively 
more general in going from the first to the 
fourth. 

Shimizu and Murata[48J, Shimizu[49], George 
and Robinson[20l, Murata et al. [37], and Joy[22] 
have used Monte Carlo calculations to simulate 
primary electron (PE) scattering in a specimen, 
and they deduced the SE emission intensity from 
the PE energy deposition near the surface of the 
specimen with considerable success. However, 
because they di.d not calculate each generated SE 
trajectory, it was primarily difficult to quantify 
the energy or the angular distribution of SE emis
sion from the specimen surface. 

Ganachaud and Cailler[l7,19] and also their 
associates[l3,18,21], Koshikawa and Shimizu[26], 
Koshikawa[27], Ding and Shimizu[J6]. and Luo and 
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Symbol Table 

SEM Scanning electron microscope 
PE Primary electron 
SE Secondary electron (the energy< 50eV) 
BSE Backscattered electron (the energy~ 50eV) 
E An electron energy in the specimen (eV) 
E' The energy of a scattered electron (eV) 
N The number of atoms per unit volume (cm- 3) 
e The electronic charge (C) 
Z The atomic number 
J The mean ionization potential of an atom(eV) 
c The light velocity (cm/s) 
m The electron rest mass (g) 
h The Planck's constant divided by 21 (erg•s) 
EP An energy of the fast electron (eV) 
EF The Fermi energy (eV) 
kF The wave vector at the Fermi energy (cm- 1) 
Ee The surface potential barrier (eV) 
s Step length of a fast electron (cm) 
lr Elastic mean free path of a fast electron 
A

5 
Inelastic mean free path of a slow electron 

n Index of refraction for a slow electron 
passing through the specimen surface 

8 The external angles of the electron 
trajectory measured from a normal to the 
surface. 

8' The internal angle of the electron 
trajectory measured from a normal to the 
surface. 

o Secondary yield 
, Backscattering yield 
I(r) Radial distribution of PE beam current 

density 

Joy[34) have tried straight forward simulation of 
SE behavior in a specimen using Monte Carlo meth
ods. All of their caJ cu lated results have shown 
good agreement with some fundamental experimental 
results eg. energy distribution, yield, and angu
lar distribution of emitted SEs and BSEs. Howev
er, none of the papers except Koshlkawa and Shimi
zu[26] have discussed the spatial distribution of 
those signals. 

As is well known, a major mechanism in pro
ducing SE's in metals is the electron cascade 
process. Koshikawa and Shimizu[26) have taken 
into account only the cascade process, and show 
that the calculated results agreed very wel.l with 
experimental results for the energy and the angu
lar distribution of SE's at Lhe specimen surface. 
Even though their approach uses rather coarse 
approximation, unless we are interested in fine 
structures found in electron energy loss spec
trum, or Auger electron spectrum, their model is 
practically acceptable. We have to note, howev-
er, they assumed the PE moved along a straight 
line without energy loss. On the other hand, for 
electrons whose energy lies from several tens of 
keV down to O.lkeV, the trajectory is quite well 
described by a Monte Carlo simulation with the 
single scattering model, and various applications 
of the method have been reported in the field of 
SEM, electron probe micro-analyzer, electron beam 
lithography, etc.[20,22,28,29,33,37,41,42,48,49, 
50) A major insufficiency of this model occurs 
when the electron energy is low. This is be
cause the accuracy of the Bethe theory which 
constitutes major part of the model becomes 
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insufficient for electrons whose energy is less 
than about few keV or for heavy elements. 
Considering these advantages and disadvantages of 
these two types of the simulations and each 
applicable energy region, it should be very 
useful to combine these two models. 

In the present study, either the primary or 
the generated electron in a specimen having energy 
greater than 0.lkeV is defined as a fast electron 
and the single scattering model is used in the 
simulation which employs the Mott elastic scatter
ing cross section and the Rao Sahib-Wittry energy 
loss equation. The electron having energy small
er than 0. lkeV are defined as a slow electrnn and 
the cascade model is used which takes into account 
the classical binary collision with atomic elec-
trons. The performance of this simulation is 
verified in comparison with experiments for energy 
and angular distributions of slow secondary elec
trons (<50eV). [30,31J Then, this simulation is 
applied in a discussion of the quantitative signal 
variation of SEs and BSEs at a specimen surface 
topography. The influence of SE and BSE signals, 
which are made at walls of the specimen chamber in 
the SEM because of high energy BSEs from the 
specimen, is not considered. 

Simulation model 

[~§J;_f)ectrons 
In the present simulation of fast electron 

scattering in a specimen, the electron energy loss 
is calculated by using the modified Bethe equation 
of Rao Sahib and Wittry[40], namely: 

dE = 2]1;e
4
N ln( 1.166E) for E > 6. 338J (l) -ds E J 

dE = 2]1;e
4
N , for E < 6.338J (2) 

-ds 1.26(JE)'" 

where Eis an electron energy, N is the number of 
atoms per unit volume, e is Lhe electronic charge, 
Z is the atomic number, J is the mean ionization 
potential of the atom given by Lhe equation of 
Berger and Seltzer[4]: J= 9.76Z + 58.5z- 0 · 19 (eV). 

For the elastic scattering cross section of 
an electron, the Mott cross section is used. 
This cross section is believed lo remain accurate 
at. low energies and for heavy elements[28J. The 
cross section per unit solid angle in a direction 
0 i.e. the differential cross section is ex
pressed by the following equation for an unpolar
ized electron beam: 

io (Bl = lf(Bll2 
+ lg(Bll2 ( 3) 

The functions f(0) and g(0) are the scattering 
amplitudes which are given by the partial wave 
expansion analysis of the relativistic wave 
equation of Dirac[32) as follows. 

f(0)= 21K f=1H+1)[exp(2L61)-1]+l[exp(2Lo-1-1)-1llP1(cos0) ( 4) 

g(0)= 21K f=,f-exp(2L61)+exp(2Lo-1-1)]P 11(cos0) ( 5) 

where L = (-1) 112 , K2 = w2 - I, W is the Lola] 
energy of the incident electron, Pt and P1t are 
the l th ordinary and the associated Legendre 
functions, respectivdy, and lit is the phase 
shift for the l th partial wave. In a practical 
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calculation the summation is carried out as far 
as the f o 11 ow in g con d i t ion is sat. is f i e d ; 
I OK I ~ 10- 3 . The phase shift, according to 
Bunyan and Schonfelder[ll), is given by 

Kj1+1(Kr)-j1(Kr)[(W+1)tan,j,K+(1+1 +K )/r) 

Kni+1(Kr)-ni (Kr)[(W + 1)tan,j,K+(1+ 1 + K )Ir] 
( 6) 

using atomic uni ts where 1i = c = m = 1. This 
expression should be evaluated at large radius r 
where the atomic potential Vis negligible. Also, 

takes the value either -1 - 1 or 1 according to 
spin-up or spin-down, j l (Kr) and n 1 (Kr) are the 
Bessel and the Neumann functions, respecli vely. 

is obtained by solving the following differ
ential equation. 

dJt = f sin2cf>K + (W-V) - cos2cf>K (7) 

This equation is part of the Dirac equations for 
an electron in a central field.[11) For the 
atomic potential V, one can use the Thomas
Fermi [ 12], the Hartree[ 12), the Hartree-Fock[51], 
or the Thomas·-Fermi-Dirac[8 I potential. In the 
present cal.cu lat ion the Hartree-Fock potential is 
used for Cu, the Hartree potential is used for Au, 
and the modified-Hartree-Fock potential[29) is 
used for Al. for example, according to Strand 
and Bonham[51], the Hartree-Fock potential for 
free neutral Cu atom can be evaluated by the 
following analytical expression. 

where 

and 

ay 1=1.5436, a). 1=3.856, 
by 1=-8.439, b). 1=9.935, 
by 3=O.1973, bJ.3=1.4838. 

ay 2=-O.5436, 
by 2=-16.284, 

(8) 

a). 2=47 .41, 
b). 2=32.013, 

(10) 

In a practical calculation of the scattering 
cross section, we intl'Oduced t.he functions E(e) 
and H(e) [ 10) in stead of f(0) and g(0) which are 
defined by the following equations in the same 
manner done by Yamazaki[54]: 

00 

4LH(0) = F:,,[exp(2Lo-1)-exp(2Lo1)]L-1(coseJ (11) 

4LE(0) = f=,[exp(2Lo-1)+exp(2Lo1)-2]L·1(cose) 
(12) 

where, 

L'n(cos0) = n[Pn(cos0) ± Pn-1(cos0)] (13) 

Then, the cross section is expressed as 

~O (0) = ~(sec 2 ~ ·IEl
2 

+ cosec
2 ~ ·IHl

2
) ( 14) 

Equation (14) is calculated numerically, and 
the differential cross sections are listed in a 
table for many electron energies. The cross 
section at an energy of interest can be obtained 
by an interpolation from the values in the table. 
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The Bessel, the Neumann and the Legendre 
functions are calculated using recurrence rela
tions as, 

jm+1(:x:) = -jm-1(:x:)+(2m+1)· jm(:x:)/:x: 

nm+1(:x:) = -nm-1(:x:)+(2m+1)·nm(:x:)/:x: 

with initial conditions 

jo = sin:x:/:x:, j1(:x:) = sin:x:/:x:
2
-cos:x:/:x: 

no = -cos:x:/:x:, n1(:x:) = -cos:x:/:x:
2
-sin:x:/:x: 

and 

(15) 

( 16) 

(17) 

( 18) 

L 'n+1(:x:)=[ (2n+ 1):x:L •n(:x: )-(n+ 1)L 'n-1(:x:)-(1±:x:)Pn-,J/ n ( 19) 

Pn+1( :x:) = [ ( 2 n + 1 ):x: Pn( :x: )-n Pn-1 ( :x:) ]/ ( n+ 1) 

with initial conditions, 

L'o(:x:) = 0, 

Po(:x:) = 1, 

respectively. 

L•1(:x:) = :x:±1 

P1(:x:) = :x: 

(20) 

(21) 

(22) 

These elastic and inelastic basic equations 
are combined in Lhe single scattering 
model[ 28, 29]. Electrons are assumed lo loose 
their energy along the path continuously according 
to Eqs. ( 1) and (2). A change in direct.ion of 
electron motion is assumed to be caused by elastic 
scattering events only for fast electrons, and 
this is calculated using Eq. (3). Therefore, the 
trajectory is divided into many steps, with step 
length basically equal to the mean free path J. f 
for elastic scattering. In order to lake account 
of variation in step length s, the step length s 
is calculated using a uniform random number Rs 
distributed from Oto 1 as given by the following: 

s = - ). f · ln Rs (23) 

The electron trajectory of the fast el.ectron is 
simulated until the electron escapes from the 
surface, or until its energy falls to 0. lkeV. 
Slow Electrons 

The calculation model for slow electrons is 
basical Ly the same as proposed by Koshikawa and 
Shimizu.[26) For the SE excitation function, the 
Streitwolf equation[52) is used, namely: 

(24) 

where Ep is an energy of the fast electron, EF is 
the Fermi energy, and kF is the wave vector at the 
Fermi energy. ln this equation, S(E) is the 
number of SEs exci led per unit energy into an 
energy interval between E and E+dE per L1_nit ~a

1
th 

length of the fast electron ( units of cm 1 ·ev ). 
In a practical calculation this energy distribu
tion is obtained numerically by using random 
numbers. By taking the minimum and the maximum 
electron energy to be Ee= EF + e and Ep, respec
tively, the SE energy is given by using the uni
form random number RE, i.e. 
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Table I. Parameters used for Al, Cu, and Au in the 
present calculation. 

Work Fermi Surface Number of 
Function Energy Potential SE Generated 

(eV) (eV) Barrier (eV) (PE= 1 keV) 

Al 4. 25 11. 80 16. 05 58. 5 

Cu 4. 4 5 7. 00 l I. 4 5 25. 8 

Au 4. 25 5. 51 9. 76 30, 0 

(25) 

where A = ( Ep - EF ) / ( Ep - Ee ) , $ is the 

work function and Ee is Lhe surface potential 
barrier. The minimum energy Ee indicates that 
the calculation of slow electron trajectory con
tinues until the electron energy becomes equal to 
Ee- Energies less than this are of no interest in 
the present case. The values of E~, $ , and Ee 
for Al, Cu, and Au are summarized in fable 1. 

The angular distribution of a SE excitation 
by a fast electron is assumed to be spherically 
symmetric. The position of the excitation is 
determined at random within one step of the fast 
electron's trajectory. In a collision between a 
liberated SE and an electron of the specimen, the 
binding energy of the atomic electron is neglect
ed, and the classical binary collision model is 
adopted. Then, the electron energy afLer the 
collision is E'=E·cos 2e, where B is the scatter
ing anglea and the energy of the other electron is 
E''=E•sinB. According to Lhe assumption of 
spherically symmetric scattering in the center of 
mass system, taking into account the exclusion 
principle and the motion of the atomic electr-ons, 
Wolff showed that the average electron energy 
after scattering E' is related to the energy 
before scaLtering E as follows[53]: 

E' = a (E) · E (26) 

In this equation a (E) is nearly constant for 
E ~ 2 EF according to Wolff. Therefore, we will 
consider a (E) to be a constant a over all the 
energy range of interest. Using the uniform 
random number Re, Lhe energy of a scattered elec
tron E' is obtained from the following equation as 
used in Ref.[26]: 

F.' E R 1/2 
C (27) 

After I<:' i.s determined in Eq. (27), the scaLt.ering 
angle of this slow electron B s is obLained. The 
mean free path for this collision process is 
determined from the following equation. 

As 10(- 2 · 6 ·log E + 3 . 3 ) nm (Es_25eV) 

0.5 nm (25eV<Es_lOOeV) (28) 

This equation was also introduced by Koshikawa and 
Shimizuf26) who have approximated experimenLal 
results for the escape depth of Auger elect.rans, 
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Table II. The classification of electrons in the 
present simulation model. 

Elect.rm 
energy 

EC 5-E< ':/JeV 

':!JeV~E<lOOeV 

lOOeV~ E 

Vacuum 

Specimen 

Definiticn 

slo,, 
elect.nn 
slo,, 
elect.rm 
fast 
elect.nn 

Primary 
Electron 

Sirrulaticn Electrcns Reentry of 
rrroel 

cascade 

cascade 

single 
scattering 

enitta:1 fran enitted 
surface electrcris 

SE n::Jt 
cxnsidered 

BSE cxnsidered 

BSE cxnsidered 

Emitted Electron 
Ei:50eV: SSE 
E<50eV: SE 

Scattered 
Primary 
Electron 

Fig.I. Schematic diagram of the present simulation 
model. The genera Led e lcctron within Lhe 
specimen may be a fast or a slow electron 
depending on whether the energy is above or below 
lOOeV, respectively. The emitted electron from Lhe 
specimen surface may be BSE or SE depending on 
whether the energy is above or below 50eV, respec
tively. 

thus, the expression of Eq.(28) takes into account 
all Lhe energy loss processes an electron will 
undergo in the specimen. The step length of a 
simulated SE is determined hy considering its 
straggling from the mean value as in Eq. (23). The 
refraction of an electron trajectory at the speci
men surface because of Lhe potential barrier is 
calculated by the momentum conservation law. The 
index of refraction n is given by 

n = s in 0 / s in 8 ' = ( E / ( E - Ee ) ) l / 2 ( 2 9 ) 

where Eis an electron energy in the specimen, and 
Ee is the surface potential barrier. 8 and 8' 
are the external and internal angles of the elec
tron motion measured from a normal to the surface. 

Fig.l illustrates the present simulation 
model of fast and slow electron behaviors in a 
specimen. According to Table I l, one of the two 
models is applied to simulate Lhe electron trajec
tory, and the emiLLed eleeLr-ons may be SE or BSE 
depending on the electron energy. Fig.2 shows an 
example of trajecLories calculated by the present 
model of one PE incident normal Ly on a bulk Cu 
specimen at 6keV. ln this figure one can see a 
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E 
-S 

~ 50 
0. 
a, 
0 

100 

-50 
0 

Lateral Distance (nm) 

0 

Cu 
6 keV 

50 

F'ig.2. An example of simulated trajectories of 
one PE and generated fast and slow electrons in a 
bulk Cu specimen for 6keV PE incident normal to 
the surface. 

meandering trajectory of the PE, also the SE 
cascades along it. In this sample calculation, 
one can see a high energy SE generated in the 
middle of the PE trajectory and it also has a 
meandering trajectory, with a ternary electron 
cascade taking place along that trajectory. The 
number of SE generated by the PE increases as the 
trajectory approaches the end of its range. F'or 
a slow electron the step becomes longer as the 
electron's energy becomes lower as expected from 
Eq. (28); here, long straight lines in the figure 
are the steps of low energy electrons. Since 
every fast electron loses its energy un ti I O. l keV 
and becomes a slow electron, one can see a cascade 
at the end of every fast electron trajectory. 
Number of SE Gener.i,tion 

Although S(E) in Eq. (24) gives an absolute 
number of SE excitations in one PE trajectory, 
contributions of plasmon and Auger electrons to 
the SE production are not taken into account. 
Also in the present calculation model of electron 
cascade, only binary col 1 is ion is considered as a 
process slow electrons undergo. In order to 
compensate for these insufficiencies of the 
present treatment, S(E) is regarded here as a 
relative value. The number of SE generated by 
each PE is adjusted in the present model, and this 
is determined by a comparison wit.h experimental 
results. Experimental resu I ts of Koshikawa and 
Shimizu[25] show that the total secondary yield 
from the specimen surface is about 1.0 for 2keV PE 
incident on Cu, and the simulation is set to give 
the same value. A tentative value for the total 
number of SE generated by a lkeV PE is 25.8, if 
the PE trajectory lies entirely within the speci
men. Of course the average number of SE generat
ed fn the specimen is less than this value because 
of the PE backscattering. The value of 25.8 is 
adopted to match the calculated results consider
ing the backscattered PE and the low energy SE 
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& 

" 
1.0 

"O 

Q) 

;,-: 0.5 

0 
0 5 

Experiment 

o Koshikawa-Shimizu 
" Joy 

10 15 
Beam Energy (keV) 

20 

Fig.3. PE energy dependence of secondary yield at 
normal incidence to Cu surface. + o: total 
secondary yield, ~: backscattering yield (it 
consists of real backscattered PEs and high 
energy (50~E~JOOeV) slow electrons), and o: 
real secondary yield (it consists of low energy 
(OiE<50eV) slow electrons). 

emission from the specimen's surface with experi
mental resu l Ls. Si nee it is assumed that only 
electrons over O. lkeV can produce SEs, the number 
of SE generated in one step of the PE trajectory, 
if it is in the speeimen, is calculated simply by 
the following equation: 

25.8·(PE energy loss in a step in keV) 
(1.0-0.l (30) 

The total number of SE generated for a PE at E0keV 
is 25.8·(E

8
-0.l)/(l.0-0.1) in one trajectory. 

Neglecting .lkeV compared to Eo in Lhis equation, 
a lOkeV PE produces basically 10 times more SE 
than a lkeV PE in the specimen. In the same 
manner the number of SE' s generated at lkeV PE 
incident on Al and Au is summarized in Table I. 

It should be noted that the energy conserva
tion Jaw is not satisfied in the present simula
tion. For example, when a fast SE is generated 
from the PE trajectory, the energy loss of the PE 
due to the ionizat.ion is not considered. There
fore, the backscattering yield obtained by the 
present calculation becomes larger than the previ
ously calculated result using the single scatter
ing model because of the increased emission of the 
generated fast secondary electrons along PEs. 
Al so, the mechanism of SE production by pl asmons 
should be treated more precisely which has a 
significant influence on the SE excitations. 
These aspects of the problem should be treated in 
a future study. 

ResuJJ~~nd discussions 

According to the usual convention if an elec
tron emitted from the specimen surface has an 
energy greater than 50eV, it is considered a 
backscattered electron (BSE); if it has an energy 
less than 50eV, it taken as a SE. These classi
fications are summarized in Table JI. 
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cu 
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' 

-- Present model 
- Bindi et ol.(Colc.l 

Bindi et al. (Exp.l 
··-·-·· Pillon-Roptin (Exp.) 

10 

Energy (eV) 

-- Present model 

-- Bindi et al. (Cale.) 

------ Bindi et al. (Exp.) 

------ Pillon-Roptin 

10 

Energy (eV) 

(Exp.) 

20 

20 

Fig.4. Normalized energy distributions of emitted 
SE from Cu for (a)0.6keV and (b)l.0keV PE. 
"Cale." and "Exp." show the calculated and the 
experimental results, respectively. Experimental 
results of Pillon and Roptin are quoted from a 
paper of Bindi et al.(51 

Secondary and Backscattering Yiel~...§ 
The total yield at 2keV PE incidence is ad

justed to agree with the experimental result of 
Koshikawa and Shimizu.(251 With this adjustment, 
the calculated total secondary yield from the 
specimen (~+o) agrees quite well with experimen
tal results of Koshikawa and Shimizu[25J and 
Joy(22] over a wide range of energy as shown in 
Fig.3. Taking the ratio of the number of elec· 
trons emitted from the specimen surface whose 
energy is higher than 50eV to the number of the 
incident electrons, the backscattering yield (~) 
is obtained. In the same manner Lhe ratio of the 
number of emitted electrons from the specimen 
surface whose energy is .I ess than 50eV to the 
number of the incident electrons is the secondary 
yield (6). The energy dependence of Lhe back
scattering yield (~) is plotted in the figure, 
and again, very good agreement is found between 
the calculated result and Lhe experimental result. 
A small hump is observed at around lkeV for the 
backscattering yield. This ls because of an 
influence of high energy slow electrons as fol
lows. Not only backscattered PEs, but also high 
energy slow electrons ranging from 50eV to l00eV 
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Fig.5. Normalized energy distributions of emitted 
SEs from Al and Au specimens al lkeV PE incidence. 
"Cale." and "Exp." show the calcu.laled and the 
experimental results, respectively. Experimental 
results of Pillon and Roplin are quoted from a 
paper of Bindi el al.[51 

are counted as backscattered electrons. Because 
the yield of low energy (<50eV) electrons 6 
increases rapidly at low PE energies as shown in 
Fig.3, the number of high energy (~50eV) slow 
electrons, which is included in the BSE, should 
increase for this PE energy. Since the calculat-
ed distributions of ~+6 and agree with the 
experimental results quite well, the distribution 
of real secondary yield 6 should be very close to 
the real one. 
Energy DistributioQ 

Energy distributions of SE are shown in 
Figs.4(a) and (b) at 0.6 and l.0keV PE incident 
normally on a bulk Cu specJmen. They are normal-
ized to have the same peak value. The calculated 
results are shown in the histogram. The experi--
mental and the other theoretical values are quoted 
from a paper of flindi et al. [5] The calculated 
result of Bindi et al. has been obtained based on 
the Boltzmann transport equation. The present 
results show good agreemenL with the other results 
shown in Fig.4. However, the peak energy is a 
little higher and the full width at. half maximum 
of the distribution is a little larger for the 
present work compared to the other distributions. 
The difference is larger at the lower PE energy. 
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In an analysis of SE emission by Koshikawa 
and Shimizu[26], the maximum escape depth of SE is 
about 7.5nm in Cu. Since the extrapolated elec
tron range for lkeV PE is about 10. 0nm and the 
energy deposition has a peak at some depth, the SE 
generation is not uniform within the escape depth. 
If a SE is generated at a shallow region from the 
surface, the SE can keep its generation energy 
with high probability in its transport toward the 
surface, then a contribution of high energy SE to 
the energy distribution is increased. On the 
other hand, for high energy PE incidence, PE 
penetrates through a layer of 7.5nm in a few 
initial steps and the spatial spread is very 
small. Then, the SE generation is quite uniform 
in the escape depth. ln this situation the 
relative probability of the lower energy SE emis
sion from the surface is increased. This is the 
reason that the calculated peak shifts toward 
higher energy and the distribution becomes wider 
for lower energy PEs. The electron beam energy 
dependence of the SE energy distribution is also 
found in the curves obtained experimentally by 
Koshikawa and Shimizu, [25] and Bindi et al. [5] 

In the same manner, calculation is made for 
Al and Au specimens with the parameter shown in 
Table I. The energy distribution of SE for Al 
and Au is shown in Fig.5 when the incident PE 
energy is lkeV. Although the present calculation 
model does not inc I ude plasmon excitation, inner
shell excitatlon, and some other processes which 
electrons undergo in the specimen, the calculated 
distribution agree quite well with calculated 
results of Bindi et al.[5,6] and other experimen
tal results. The calculated distribution of Al 
shows wider distribution than that of Au. This 
is because the surface potential Ee is smaller for 
Au. The relative probability of electron genera
tion increases rapidly with decreasing electron 
energy as understood by Eq.(24), and if Ee is 
small, the energy distribution of generated slow 
electrons are peaked sharply and the energy dis
tribution is getting narrower. 
~tial Distribution 

Here, the Gaussian spatial distribution is 
assumed for the PE beam current density as ex
pressed by the following: 

( 31) 

Here, the beam diameter 2l is set 0.1nm. A 
spatial distribution of SE or BSE can be clarified 
by the difference between the distribution and the 
original Gaussian distribution. This assumption 
makes it easier to quantify the emission region of 
signals. The radial distributions of SE and BSE 
for l and lOkeV PE incidence are shown in Fig.6. 
These distributions show the theoretical resolu
tion of the SEM image. 

It should be noted that the region shown in 
1-'ig.6 by the distribut.ion is very narrow compared 
to the electron range (for example, about 10.0nm 
in Cu at lkeV). Therefore, this distribution is 
produced mainly by the influence of the initial 
few steps of the simulated incident PE, and the 
contribution of the PE backscattering after Lhe 
deep penetration in the specimen is very low. 
Thus, the SE intensity is mainly determined by the 
amount of the PE energy loss in the maxi mum SE 
escape depth from the specimen surface. Also, 
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Broken line shows the Gaussian current density 
distribution assumed here for the PE beam. 

the BSE intensity is mainly determined by the Mott 
differential cross section at the scattering angle 
over 90 degree. Some features for SE and BSE are 
shown in the figure. The diameter at half inten
sity of the peak value for the beam center can be 
referred as the emission region of the signal. 
Since the slope of the distribution for SE is more 
gentle than that of BSE, the following discussion 
can be made. The emission region of SE is wider 
than that of the BSE for both PE energies. Since 
the energy of Lhe BSE should be low at some dis
tance from the PE incident point, (l).a lower 
energy BSE can produce more SEs effectively, and 
(2) .a BSE will be recognized as a SE if its 
energy is Jess than 50eV. (3).The generated SE 
itself can spread out in a wide range. The SE 
mean free path increases with decreasing energy, 
as shown in Eq. ( 24), and the mean free path is 
3. 525nm at the threshold energy to overcome the 
surface potential of Cu (11./45eV). 

Both signals decrease as the PE energy 
increases. For BSE it can be understood by the 
fact that the Mott cross section for high 
backscattering angles at lOkeV is much smaller 
than thaL of lkeV as shown .i.n Fig. 7. On the 
other hand, according to the Rao Sahib and Wittry 
equation (Eq.(2)) the energy loss is in proportion 
to E- 0 - 5 , and this is because the SE intensity 
decreases at high incident energy as in Fig.6. 
Although the absolute intensity for SE seems to be 
higher than that of BSE and the difference 
increases with energy in the figure, it is not 
always true and these distributions cross at 
0.6keV PE incidence. However, the relative 
variation of each radial distribution of SE is 
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Fig.7. The Mott differential cross section for Cu 
at lkeV and lOkeV in the polar plot. 

almost independent of the PE energy. 
Usually it is assumed Lhat the full width at 

half maximum of the spatial distribution of SF: 
intensity is of the order of Lhe mean free path of 
SE,[14,26] and for Cu it is from 0.5 lo 2.0nm.[46] 
The present result shows Lhal Lhe diameter at half 
maximum of the distribution for BSE is 0.130nm 
and 0.118nm for 2!=0.Jnm PE beam energies of I 
and lOkeV, respectively. For SE each of them is 
0.125nm and 0.157nm, respectively. Although 
present values are much smaller than Lhe value 
previous.Ly believed, a fairly large contribution 
to the SE emission comes from the tail of the 
distribution. 

It is generally believed that the resolution 
of an SE image is much better than that of a USE 
image in the SEM, but the present calcu I.at ion 
shows the opposite tendency at lOkeV. Although 
the present calculated result shows a theoretical 
signal distribution, no surface feature is taken 
into account, such as topographic, compositional, 
and electric potential differences. The signal 
variation for SE and BSE at some topographl~ 
feature of the specimen will be discussed later. 
Angular distribution of emitted SE and_BS~ 

The calculated angular distribution of emit
ted BSE and SE intensities from a Cu surface al 
normal PE incidence are shown in a polar plot as a 
function of scattering angle in Fig.8(a) and (b) 
for J and lOkeV PE, respectively. Generally, the 
angular distributions of SSE and SE are coincident 
with a cosine function, which is shown in a solid 
line i.n the figure. At around 8 = 0°the inte
grated solid angle by the azimuthal angle is 
small, and the statistics of the electron detec
tion ls not sufficient. Assuming that the detect
ed number of SSE or SE 1 s M 1, the amoun l of the 
error should be (l/M 1) 1/ , and this value is shown 
in a error bar in Fig.8. l t is found that the 
variations of SE at lkeV and SSE at lOkeV agree 

118 

BSE 

Cu 
1 keV 

BSE 

Cu 
10 keV 

0 

SE 

0 

(a) 

SE 
l 

(b) 

Fig.8. Angular disLribuLions shown in a polar plot 
for emitted BSE and SE from Cu al (a)l.OkeV and 
(b)lOkeV PE incident normal to Lhe surface. 
The statistical error is shown in the bar. The 
cosine distribution is shown in a solid line. 

z 

X 

Fig.9. Schematic diagram of Lhe solid angle for SE 
and SSE detection at PE oblique incidence. 

with the cosine Jaw. ln Lhe variations of SSE at 
lkeV and SE at lOkeV, the distributions are more 
peaked in a direction normal to the surface than 
the cosine function. This variation for SSE at 
lkeV can be attributed to the Mott elastic scat
tering cross section as discussed in the next 
paragraph. 

The angular distribution of emitted SSEs and 
SEs at oblique incidence of PE on the specimen are 
also calculated. A geometrical diagram of the 
calculation is shown in r'ig.9. The x-y plane is 
the specimen surface. The incident PE beam is in 
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Cu 1keV 
0 BSE 

+ SE 
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0 

Cu 3keV 

(a) 
PE 

l-'ig.10. Angular distributions shown in a polar 
plot for emitted BSE and SE from Cu aL (a)l.OkeV, 
(h)3keV, and (c)lOkeV PE incident at 60 degree 
from the normal angle to Lhe surface. 

the y-z plane. for oblique incidence the BSEs 
are counted only in the shaded part of a spherical 
coordinate system (0 60° , -45° ~ ~ ~45°). 
The calculated results are shown in the polar plot 
for 1, 3, and lOkeV PE incident on Cu in Fig.10. 
For BSEs at 3 and lOkeV PE the distribution is 
peaked at the reflective angle of the PE inci
dence, but at lkeV PE incidence the distribution 
is peaked not on.ly at Lhe reflective angle but 
also at the incident angle. This angular depend
ence is because of the Motl di fferenL ial cross 
section used in the calculation of Lhe fast elec
tron elastic scatterings. As shown in Fig.7, the 
Mott cross section of high backward scattering 
angles at l keV is much larger than that at I OkeV. 
On Lhe other hand, the angular distribution of SE 
emission from Cu at every PE energy is almosL 
independent of the PE incident angle as shown in 
Fig.10, and it agrees wiLh the cosine function. 
This phenomenon has already been found experimen
tally as pointed out by Seiler.[47] 
SE and BSE Yi.!Dd as a function_of the 1!.!l.tle of PE_ 
incidence 

All signal intensities are expressed 
of yield, the ratio of the number of 
electrons (SEs or BSEs) to thee number of 
PEs. 

in terms 
emitted 

incident 

Oblique infinite.Rian~ First, Lhe intensity 
variation of BSE and SE signals with oblique angle 
of the specimen surface to the PE incidence is 
calculated. Fig. J 1 shows an illustration of the 
boundary condition of the specimen. The thick
ness and the area of the surface are infinitely 
large. The oblique angle of the plane equals PE 
incident angle taken from the normal to the speci
men surface. 

The change in the coefficients of escape 
according to the angle of incidence is examined 
for an incident energy of l and 3keV, as shown in 
the right part of Figs.12(a) and (b), respective·· 
ly. The value of q is the ratio of the number of 
BSEs to that of PEs (= the backscattering coeffi
cient), o is the ratio of the number of SEs to 
that of the PEs. The solid line in this figure 
shows the data obtained by the experiment of 
Kos.hikawa and Shimizu, [25] while the broken line 
indicates the data obtained by the experiment of 
Muller quoted from the paper of Koshikawa and 
Shimizu.[25] The results of our calculation agree 
well with these experiments. The dependence of 
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+ SE Cu 10keV + SE 
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Primary 
Electron 

Fig.ll. Illustration of the oblique infinite plane 
specimen made of Cu. 

q, o, and qt o on the PE incident angle is gener
ally thought to be coincident with the secant 
function. An approximately similar tendency is 
seen in the pr·esent result. The distribution 
indicated by a dotted line is the secant distribu
tion normalized at 0 = 0. In the present calcu
lation, the increasing rate of q and o at higher 
angles is smaller than that of the secant distri
bution. Koshi kawa[ 27) reported that the values of 
these coefficients were smaller than those deter
mined by the secant law at large angle incidence 
of PEs if the atomic number of the specimen was 
higher than that of Al (e.g. Cu), and that they 
were larger than the values determined by the 
secant law at large angle if the atomic number was 
low. 

At an incident energy over lkeV, the value of 
o at 0 =O becomes smaller as the incident energy 
becomes larger. This is because the number of 
SEs excited is approximately proportional to the 
amount of energy loss of PEs within the maximum 
escape depth of SEs (e.g. 10nm). According to 
the Rao Sahib and Wittry eguation, the energy loss 
is propor-tional to E-O · if E is less than 
6. 338J=l. 989keV in Cu, that is, the energy loss 
becomes larger- as the incident energy becomes 
smaller. 
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Fig.12. Electron yields of SE and BSE as a 
function of incident angle of PEs, for (a): lkeV 
and (b): 3keV. o t q: total SE yield, o: SE 
yield, q: BSE yield. The experimental curve of 
Muller is quoted from the paper of Koshikawa and 
Shimizu.[25] 

The calculated value of o decreases sharply 
at very large angle, especially when the energy 
is low. This is because when the incident angle 
is so large, most of the PEs which could excite 
SEs with diffusing within the maximum escape 
depth of SEs, escape as BSEs immediately after 
the bombardment of the specimen surface. ln 
such situation the source of SE production de
creases with increasing the PE incident angle. 

Wide oblique plane followed by infinite hori
~.Qr:!1.f!.LJl..ljl.ne_ Fig.13 shows an illustration of the 
pattern used in this calculation. The thickness 
is infinite, and the area of the horizontal plane 
is infinitely large in the calculation. The 
difference in height between the top edge of the 
oblique plane and the horizontal plane surface is 
500nm so that escape of electrons from the upper 
edge of the pattern or creeping of electrons under 
the join of planes due to scattering might be 
avoided. Electrons are irradiated onto the 
central region of the oblique area. 

Here, we can estimate the influence of SEs 
made after the BSE reentry on the horizontal plane 
area as illustrated in Fig.13. The signal 
intensity at the irradiation of PEs onto the 

120 

Primary 
Electron 

Fig.13. Illustration of wide oblique plane 
followed by infinite horizontal plane made of Cu. 
Some of PEs incident vertically onto the oblique 
area are reflected as BSEs and reenter the hori
zontal area of the specimen, and the BSEs generat
ed at the horizontal area will re-reenter the 
oblique area. Calculation is made for taking 
into account all these processes. 

500 nm 

Primary 
Electron 

A 

500 nm 

90-

scan -

8 
C 

Fig.14. Illustration of a convex step with 
vertical side walls on the infinite horizontal 
plane. PE beam incident vertically on the 
specimen is scanned across the step. With 
varying the width of the step the SE and BSE 
signals are examined. ln the simulation, aJ 1 
trajectory of BSE is calculated even after its 
emission from the specimen surface, and if it is 
pointing to other part of t.he surface, we let the 
BSE incident onto the specimen and trace the 
trajectory. 

oblique plane of this pattern is compared with the 
signal intensity for an incidence of electrons 
onto the oblique infinite plane described in the 
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Fig.15. Signal waveforms of emitted all SEs (o) 
and emitted all BSEs (ij 1) and the delected BSEs 
(ij 2 ) fot· Lhe iJ lustraLed pattern in Fig. H with 
L= 500nm for lkeV PE. 

last paragraph. The difference in the signal is 
attributed to lhe reentry of eleclrons onto the 
horizontal plane as illustraled in Fig.13. The 
left part of F.ig.12 shows the escape coefficient 
of SEs (o) and the backscattering coefficient 
(ij) and the Lotal yield (ijt6) at differenL tilt 
angles (0) of the specimen under the setting 
mentioned above. To compare the values of these 
coefficients under Lhose settings with those 
obtained for PE incidence onto the oblique infi
nite plane, the number of SEs is larger in the 
former than in the latter. Under the boundary 
condition shown in Fig.13, PE emission al the 
reflective angle is emphasized, and the probabi)
ity of Lhe electron reentry onto Lhe horizontal 
plane area is increased. Therefore, not only 
the SEs excited in the oblique area but also the 
SE oxciLed in the horizontal area after the 
reentry are released from the specimen as sig
nals. On the other hand, the number of BS Es is 
smaller than the value on the infinite plane. 
The contribution of PE reentry onto the horizon
Lal plane to the BSE signal is sma.ll for the 
following two reasons: (l)tho backscattering 
coefficient for the electrons incident on the 
specimen is usually smaller Lhan unity, if we 
assume that all of the reflected PEs at the 
oblique area show the reentry, th~ backscattering 
coefficient can be expressed by ij 2 with neglect-
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Fig.16. Signal waveforms of emitted all SEs (o) 
and emitted all BSEs (ijJ) and the detected BSEs 
(i 2 ) for the iJlustrate pattern in Fig.14 with 
L= 500nm for 3keV PE. 

ing its energy and angular dependences. There
fore, the contribution of PE reentr·y onto the 
specimen to the BSE yield is very small. (2)It 
is highly probable that the electron cannot keep 
its energy as BSE due to energy loss after the 
reentry onto the horizontal plane. 

The difference between the right part and 
the left part of Fig.12 for both coefficients of 
~ and 6 becomes large according to the tilt 
angle. This is also understandable if we remem
ber that the reentry of electrons occurs more 
easily at higher tilt angles because of increased 
reflective scattering at the specimen surface. 

This phenomenon is also depending on the PE 
incident energy as seen in a comparison between 
the results shown in Figs.12(a) and (b). The rate 
of variance becomes larger al high incident energy 
than at low energy. This is because the forward 
scattering of PEs increase at higher energy 
according to the Mott cross section, resulting in 
an increased probability for them to escape out of 
the oblique area in the reflection angle. 
Analysis of the edge effect 

On the basis of the knowledge of SE and BSE 
signal intensities as discussed above, a 
topographic signal contrast in the SEM is 
discussed in this paragraph. The resolution of 
the SEM depends on the shape of the topographic 
patterns. Here, we assume a convex step pattern 
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Fig.17. Signal waveforms in the vicinity of the 
edge of the convex step pattern expressed in 
Fig.16 pattern with vertical side wall. (a)-(c): 
lkeV PE, (d)-(f): 3keV PE. 

with vertical side walls on the infinitely large 
horizontal plane as illustrated in Fig.14. This 
specimen consists of three characteristic 
portions, and we call them A, B, and C as in the 
figure. Its height is 500nm, and the width of 
the upper portion (II) is also 500nm. and the SE 
and the BSE signal intensities are calculated as 
PE is scanned across this convex step pattern. 

Figs.15(a-c) and Figs.16(a-c) show the signal 
waveforms for each pattern at incident electron 
energies of land 3keV, respectively. The signal 
waveforms shown in these figures are for SEs and 
BSEs. For BSE two types of signals are 
presented. One is the whole amount of BSEs 
emitted from the specimen surface after all kinds 
of reentries of electrons Lo the specimen, and 
another is only the amount of emitted BSEs flying 
toward a limited region of the detector. We 
assumed this detector to have a circular shape 
with a radius of 10mm, set 10mm above the specimen 
surface C. This boundary condition is determined 
supposing the detector is set at the bottom of the 
pole piece of the objective lens in the SEM with 
the working distance of 10mm. The amount of the 
signal is expressed in terms of those yields. On 
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these graphs, Jines are drawn connecting the 
points obtained by calculation. Although they 
include some statistical errors, they al low 
quantitative discussion of the changes in SE 
signals and BSE signals which are known as 
topographic contrast. For example, quantitative 
discussions can be made over the difference of 
signal between the A- B edge and the 8-C edge as 
follows. 

In this calculation, Lhe edge effect is 
reinforced by the phenomenon that the signal on 
the plane area of A and C (in particular that of 
SEs) becomes smaller as the energy of PEs 
increased. This finding is consistent with the 
reported phenomenon of SEM that the elevation of 
the acceleration voitage results in emphasis of 
the image contrast. Furthermore, as the energy 
of PEs becomes larger, the rise of the SE and BSE 
signals in the vicinity of the edge becomes dull. 
This finding suggests that the resolution of SEM 
decreases at high acceleration voltages. This 
phenomenon has al so been observed in a practical 
use of the SEM. 

Fig.l7(a-f) is an enlarged presentation of 
Figs.15(a-c), and Flgs.16(a-c) for l and 3 keV 
PEs, respectively, for the changes in signal of SE 
and BSE at the vicinity of the edge when the side 
wall of the pattern stands vertically. Assuming 
a PE trajectory as that, PE enters the surface A 
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Table III. Distance from the A-B edge to the site 
of the maximum signal for SE, total emitted BSE, 
and detected BSE. 

lkeV 3keV 

SE (6) 1.0 nm 1.0 nm 

BSE (T\} 0.3 nm 0.2 nm 

BSE (172} 0.3 nm 0.1 nm 

Table IV. Full width at half maximum of the 
distribution of the rise signal at A-B edge from 
the signal at the surface A. 

lkeV 3keV 

SE (6) 3. 71 nm 6. 72 nm 

BSE (171} 2.52 nm ~ 14.0 nm 

BSE ( 172} 0.99 nm 9.0 nm 

at a point near the edge, goes ouL of Lhe surface 
B and reenLers the surface C, SEs emit from the 
surfaces A, B, and C close to the poinLs of PEs' 
incidence, exit, and the reentry, respecLively. 
Therefore, the signal of SEs is maximal when the 
PEs have Lraveled the most cfficienL path to 
produce SEs within the SE escape I ength measured 
toward inside normal Lo each surface. Hence, the 
maximum SE signal intensity is obtained at a point 
slightly off tho edge toward the surface A instead 
of at a poinL right over the edge. There has been 
a difficulty in a quantification of the SE inten
sity at the edge in numerical calculations, unless 
individual SE trajectory has bean calculated as in 
the presenL simulation. Previous treatment of 
the SE signal using the amounL of PF. energy depo
sition in a specimen seems Lo be insufficient in 
Lhe estimaLion of the valuc.[20,22,37,'18,'19] On 
Lhe other hand, the contribution of PE reent1·y 
onto the surface C Lo the !3SE signal can be re
garded as small, as discussed in the last para
gr·aph. Therefore, the maximum BSE signal is seen 
in Lhe viciniLy of the edge in most cases. The 
offset for each maximum signal of SE, BSE, and 
detected BSE from the A-B edge is summar izcd in 
Table l[J. The full width at half maximum of 
each distr-ibution of the rise signal from the 
signal at the surface A in the vicinity of' A-B 
edge is summarized in Table IV. 

For both SE and BSE, a fall of signal at Lhe 
B-C edge is observed. As the energy of PEs 
increases, the fall becomes smaller, and the fall 
in the vicinity of this edge becomes Jess sharp 
like we have seen in the signals for the A-B edge. 
Tables V and VI show the distance from the edge to 
the site of the minimum signal and the full width 
al half maximum of the distribution o[ the fall of 
signal from Lhe signal at the surface C. Since 
the value in Table V is so low, the statistics is 
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Table V. Distance from the B-C edge to the site of 
the mimimum signal for SE, total emitted BSE, and 
detected BSE. 

lkeV 3keV 

SE (6) ~ 0.01 nm 0.1 nm 

BSE <17i> ~ 0.01 nm ~ 0.01 nm 

BSE (172} ~ 0.01 nm 0.1 nm 

Table VI. Full width at half maximum of the 
distribution of the fall signal at B-C edge from 
the signal at the surface c. 

lkeV 3keV 

SE (6} 0.62 nm 2.08 nm 

BSE ( 171} 0.47 nm 5.41 nm 

BSE (172} 0.45 nm 4.71 nm 

not good. llerc, the dis Lance between the A-B edge 
and the site of maximum signal is much larger than 
that between Lhe B-C edge and the siLc of minimum 
signal. Also, the full width at half maximum of 
the rise distribuLion at A-B edge is much wider 
than that of the fall distribution at B-C edge. 
This is because the influence of the electron 
reentry to the signal is noL so large at t.he R-C 
edge and Lhe signals depend primarily on the 
obi ique angle of the specimen to the primary beam. 

In the above calculations, we assumed thal 
the diameter of electron beams is zero. In spite 
of this assumption, the maxi mum signal intensity 
does not coincide with the topographic edge. 
This resu 1t indicates Lhe necessity for us to be 
careful in determining the absoluLe size of fine 
structures using the SEM. 

To compare the signal intensity between SE 
and BSE, it is lower for flSE at every combination. 
In addition, the contrast at the edge is clearer 
for SE. The BSE signal intensity q 2 , which 
takes inLo consideraLion the presence of a detec
tor, is generally much smaller than others be
cause the detected sol id angle is small. This 
signal shows almost no rise at the surface B. 
This is because the intensity of BSEs which take 
trajectories of direction almosL opposite to the 
electron beam does not change so much by the 
inclination of the specimen surface, as shown in 
the calculation by Reimer and Stelter. [41] Many 
of the BSEs, which are scattered at such a large 
angle from the specimen, have suffered large 
angle (almost 180 degree) single scattering in 
the first or the second step of PEs in the speci
men, and this phenomenon does not depend on the 
inclination of the specimen surface, but primari
ly depend on the differential cross section of 
the elastic scattering used in Lhe single scat
tering model. 
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Conclusion 

A new Monte Carlo calculation model is 
proposed to simulate not only the primary electron 
behavior but also the secondary electron cascade 
in a specimen. CalcuJated physical quantities 
agree well with the experimental results. The 
theoretical spatial resolution of SE and BSE 
images in the SEM are obtained. The present 
calculation makes it possible to simulate the SE~ 
image utilizing either SE or BSE signal. Future 
studies should be made in which the present simu
lation is applied to various features of the 
specimen in order to determine the contrast and 
resolution that can be theoretically obtained. 

In scanning electron microscopy, the 
scattering of electrons produce signals of 
complicated contrasts which are affected not only 
by the inclination on the specimen's surface but 
also by the following factors: (l)the relationship 
between the length of the inclined area of a 
specimen and the range of PE diffusion in the 
specimen, and (2)the effect of the electron 
reentries onto the specimen after they are once 
emitted from the specimen. ln this paper, an 
analysis of the SEM images is presented using the 
recently developed Monte Carlo simulation. Many 
features of SEM image will be studied in future. 
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Discussion ~lth Reviewers 

D.C.Joy : While the use of the elastic mean free 
path as the determining quantity for the step 
length is appropriate when considering the primary 
electron scattering, it would surely be more 
correct to use the total mean free path (elastic 
and inelastic) when considering secondary electron 
production (see for example Shimizu et al, J. 
Phys. D9, 101, 1976). 
Authors : In the present study as described in the 
text, we used two different models depending on 
the electron energy. Because of this, it is not 
necessary Lo use "the total mean free path" in the 
simulation as explained in the following. For a 
fast electron we used the single scattering model 
and no inelastic scattering is considered; the 
angular scaLtering of fast electrons is determined 
only by the elastic scattering. For a slow 
electron we used the cascade model and no elastic 
scattering is considered; the angular scattering 
is determined only by the electron-electron 
(binary) scattering. The single scattering model 
has been widely accepted (see for example NBS 
Spec. Publ. 460, 1976) in the field of e.g. elec
Lron probe micro-analysis, because it gives quite 
reasonable results for fast electron (>lOOeV) 
energy deposition in a specimen. The reason why 
the model gives reasonable results is that an 
average energy loss in a step (::. elastic scat
tering mean free path) is much smaller than the 
energy of the fast electron, and Lhe scattering 
angle by the inelastic coJ li sion is small. On 
the other hand, for slow electrons ( <lOOeV) a 
major mechanism in producing SEs in metals is the 
electron cascade process. As a matt.er of 
course, elastic scaLLering cross section ls quite 
large, but the major role is Lo make electron 
trajectory more random. As far as Lhe angular 
distribution is concerned, the calculated disLri
bution of emitted SEs at the specimen surface 
shows a cosine distribution, and thi.s proves that 
the SE trajectory in the specimen is almost 
random. Then, il may not be quite important to 
take into account Lhe elastic scattering cross 
section in Lhe treatment of slow electrons. In 
these physical aspect we divide elecLrons into 
two kinds; fast and slow electrons. Under this 
assumption, we do not do the so called direct 
simulation which Shimizu, Kataoka, Ikuta, Koshi
kawa, and Hashimoto have done, and "the total 
mean free path" is not necessary to use in Lhe 
present simulation. 

D.C._-1.Q.y_: The use of the Rao-Sahib Wittry stopping 
power extrapolation at low energies is a signifi
cant inaccuracy. It would be better to use the 
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tabulated data from Tung et al.(as was done in the 
recent paper by Ding and Shimizu, J. Microsc. 154, 
193 (1989)) or an improved analytical expression). 
Au tho rs : Tung, Ashley, and Ritchie obtained the 
stopping power using the dielectric function with 
some corrections for the conduction electron 
contribution, and the generali?.ed oscillator 
strength function for the contribution of inner
shell electron ionization. In one of two ap
proaches of Ding and Shimizu' s paper the Tung et 
al. 's calculation is used for the total stopping 
power. They gave another approach which was 
using the dielectric function with their own 
modification. The stopping power we used here is 
very close to that of Tung et al. in a whole 
range of energy down to the cut off energy 
(=ll.45eV). In the present model we used the 
Rao-Sahib Wittry equation down to lOOeV. Al
though the overestimation of the stopping power is 
appreciable below 500eV, the distance an electron 
at 500eV can travel is only about 5nm until its 
energy is lOOeV. Below lOOeV we used the mean 
free path of cascade scattering, and the energy 
dependence is expressed in Eq. (28). Because we 
incorporate two models as described in the text, 
the stopping power we used is not so inaccurate. 
(see our recent paper in Scanning Microsc . .;1(4), 
1989) 

Stop~ing power, which Tung et al., and some 
others have derived is only an average energy loss 
of a primary electron divided by its mean free 
path in one electron-electron collision, and it is 
an expression fat· convenience. Depending on the 
energy region of interest, simulation models can 
be constituted. However, if we consider the 
inelastic collision at low energy region (<lOOeV), 
the value of the stopping power itself is meaning
less. In other words, if we consider slow elec
trons, the value of the energy transfer at every 
collision should be taken into account and the 
trajectory of electrons which obtains the trans
ferred energy should be traced. Also, we have to 
note that the distribution of transferred energy 
is different depending on each type of collision. 

~C.Jo_y Most authors have chosen l i to be 
specimen dependent. The choice of an material 
independent model for l i is a possible source of 
inaccuracy. 
Author:.~ : The experimental value of l i is widely 
scattered as found for example in the figures of 
Tung et al 's paper. The deviation is sometimes 
100% for Al, Si or Ni, and for other materials we 
have to point out that the number of experimental 
points is too small. ln analytical expressions, 
it is surely possible to include the material 
dependences. However, on the other hand, Lhe 
difference among the Lheoretica l values of Tung 
ct al. for Al, Si, Cu, Ag and Au is almost less 
than 30%. J t shou Id be pointed out that it is 
quite difficult to define the real accurate value 
for the inelastic mean free path at presenl. ln 
the pr·esent simulation we take into account. the 
step length straggling with a random number as in 
Eq. (23), and the deviation of our value as ex
pressed in Eq. (28) from the theoretical value is 
almost covered by this straggling distribution. 
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_Q_J;_._,!g_y : The assumption that the cascade model 
need not consider energies above lOOeV is not 
obviously correct. Other workers (Ding and 
Shimizu 1989, Luo and Joy 1988, text ref.34) have 
shown that the higher energy secondaries do sti I l 
make a significant contribution. 
Author_§_ : As described in the text (see the expla
nation for F'ig.2), we consider fast electron 
generations from fast electron (which may be pri
mary electron or generated fast electron) trajec
tories. This is apparently the cascade process 
of fast electrons. 

_Q_,E.Newbury : What is the valid energy range for 
the Streitwolf equation? 
~uthors : There is no J imitation in the use of the 
Streitwolf equation in energy, and it has been 
used by Shimizu's group (for example, Koshikawa 
and Shimizu, text ref.26, Shimizu et al., J. Phys. 
D9, 101(1976), Shimizu and lchimura, Proc. 1st 
Pfefferkorn Conf. SEM 165 (1982), etc.). Howev
er, this equation is originally derived for simple 
metals, not for transition metals, and the screen
ing effect of the electronic charge by electron 
gas (plasma) is not considered. Jt is quite easy 
Lo use but for a discussion in detail it is neces
sary to know its limitation. 

D. E. Newbury Is there a fundamental reason why 
the energy loss associated with fast secondary 
electron production is neglected? 
Authors ln the present calculation, first, PE 
trajectory is calculated and the deposited energy 
in the specimen is obtained. Depending on the 
amount of energy deposited, number of SEs generat
ed is determined. The generated SE has a energy 
distribution as described by the Streitwolf equa
tion. Since the calculation has been done in 
this sequence, it was impossible to consider Lhe 
energy loss of fast electrons associated with fast 
secondary electron production. New computer code 
will appear soon. 

J...,__E.Gan;g:J!.i!cl\9. : ls the scal.tering function plotted 
in fig.? strictly null for angles greater than 90 
degree? 
A._u1_h.9rs : No, but since the value of the function 
greater than 90 degree is 2 to 3 orders of magni
tude less than that of the forward scattering, it 
disappears in the I inear plot. 

11.,Cail_J_er: How many d-band electrons are taken 
into account in the simulation? 
Al!thor..§ Since we used tho value Er,-='1. 0, the 
number of conduction band electrons considered is 
one, and no contribution of d-band elect1·ons is 
taken in to account. Who reas, in the present 
approach, irrespective of the value of the F'ermi 
energy, Lota] secondary yield is set to agree with 
the experimental data, the resultant calculated 
yields do not depend primarily on the number of 
d-band electrons considered. As the second order 
effect of taking different Ef, the shape of energy 
distribution of SE changes. 
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