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Abstract 

A Monte Carlo calculation model is introduced 
to simulate not only the primary electron behavior 
but also the secondary electron cascade in a 
specimen bombarded with an electron beam. Elec
trons having energy greater than O.lkeV are treat
ed as "fast electrons" and the single scattering 
Monte Carlo model is adopted. Electrons having 
energy smaller than O.lkeV are treated as "slow 
electrons" and the electron cascade Monte Carlo 
model is used. The calculated results for the 
energy distribution of secondary electrons, and 
primary electron energy dependence of the total 
secondary yield and the backscattering yield are 
in good agreement with experimental results. 
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Introduction 

An image of the scanning electron microscope 
(SEM) is produced using differences in emission 
yield of the secondary or the backscattered elec
tron due to a local feature of topographic, compo
sitional, and voltage differences etc., at the 
specimen surface. In order to analyze the speci
men quantitatively using the image, it is neces
sary to have a deep understanding in the processes 
these electrons undergo in the specimen, such as 
the generation, transportation, and emission from 
the surface. 

Theoretical studies have been made of these 
processes for many years with various methods.[2-
12,14,15,2O,22,23,25,27] In the approaches 
employing Monte Carlo calculation, a variety of 
models have been reported.[5,7-ll,14,15,2O,25] 
Recently, Ganachaud and Cailler[B,1O] and also 
their associates[5,9], Ding and Shimizu(?], and 
Luo and Joy[2O] have discussed models which in
clude SE generation by both high and low, forward 
and backward scattered primary electrons. The 
model used by Ganachaud, Cailler and their group 
considered various inelastic electron scattering 
processes with theoretical dielectric function for 
valence electron contribution in inelastic scat
tering. On the other hand, Ding and Shimizu 
utilized experimental data to evaluate the excita
tion function. Then, all excitation mechanisms 
were automatically included in their Monte Carlo 
simulation. Luo and Joy's model also included 
the contribution from core ionization, plasmon 
excitation, and cascade multiplication of SE using 
each theoretical excitation function. 

As is well known, a major mechanism in pro
ducing SE's in metals is the electron cascade . 
process. Koshikawa and Shimizu[14] have taken 
into account only the cascade process, and show 
that the calculated results agreed quite well with 
experimental results for the energy and the angu 
lar distribution of SE's at the specimen surface. 
Even though their approach uses rather coarse 
approximation, unless we are interested in fine 
structures found in electron energy loss spectrum, 
or Auger electron spectrum, their model is practi
cally acceptable. Since they made an improper 
assumption that a PE penetrated straight into the 
specimen, this is modified in the present work. 
This simulation will help us to especially under
stand imaging mechanisms in the quantitative 
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scanning electron microscopy. In the present 
paper, this modified Koshikawa and Shimizu's model 
is presented and the performance is shown over a 
wide range of incident PE energy.[18,19) 

Simulation model 

In the present simulation, if an electron has 
an energy higher than O.lkeV, it is considered to 
be a "fast electron" and the single scattering 
mode1[16,17] is used; if its energy is lower than 
O.lkeV, the electron is recognized as a "slo w 
electron", and the electron cascade model i s used. 
Also according to the usual convention if an 
electron emitted from the specimen surface has an 
energy greater than 50eV, it is considered a 
backscattered electron (BSE); if it has an e nergy 
less than 50eV, it is taken as a SE. These 
classifications are summarized in Table 1. 

Single scattering model 
In the present simulation of fast electron 

scattering in a specimen, the electron energy loss 
is calculated by using the modified Bethe equation 
of Rao Sahib and Wittry[21], namely: 

- dE 2;,ce
4
N Ln( 1.166E) ds E J , for E > 6.338J (1) 

dE _ 2;,ce4 N 
-ds 1.26(JE)" 2 for E < 6.338J ( 2 ) 

in keV/cm unit. where J is the mean ionization 
potential of the atom given by the equation of 
B~o?I 9 and Seltzer[!), namely: J = 9.762 + 58.5 
Z (eV). 

For th e e lastic scatte ring cross section of 
an electron, the Mott cross section i s used, since 
this cross section is believed to remain accurate 
at low energies and for heavy elements[ 16 ). The 
cross sect ion per unit solid angle in a direction 
8, i.e., the differential cross section is ex
pressed by the following equation for an unpolar
ized incident beam: 

( 3) 

in cm
2

/strad. unit. The functions f(8) and g(8) 
are the scattering amplitudes which are given by 
the partial wave expansion analysis of the rela
tivistic wave equation of Dirac[16]. 

Equation (3) is calculated numerically, and 
the differential cross sections are listed in a 
table for many electron energies. The cross 
section at an energy of interest can be obtained 
by an interpolation from the values in the table. 

These elastic and inelastic basic equations 
are combined in the single scattering model[16]. 
Electrons are assumed to loose their energy along 
the path continuously according to Eqs.(1) and 
(2). A change in direction is assumed to be 
caused by elastic scattering events only, and this 
is calculated using Eq.(3). Therefore, the 
trajectory is divided into many steps, with step 
length basically equal to the mean free path Af 
for elastic scattering. In order to take into 
account variation in step length s, the step 
length s is calculated using a uniform random 
number RS distributed from Oto 1 as given by the 
following: 
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Table 1. The classification of electro ns in the 
present model. 

Electron Simulation Electrons 
energy Definition model emitted from 

surface 

EC.!._ E < SOeV slow cascade SE 
electron 

50eV.!_ E <100eV slow cascade BSE 
electron 

100eV .!.. E fast single BSE 
electron scattering 

s = - Af * ln Rs 

The e lectron trajectory of the fast electron 
simulated until the electron escapes from 
surface, or until its energy falls to O.lkeV. 

Cascade model 
The calculation model for slow electrons 

basically the same as proposed by Koshikawa 
Shimizu[l4]. For the SE excitation function, 
Streitwolf equation[26] is u sed , namely: 

(4) 

is 
the 

is 
and 
the 

( 5) 

In this equation, S(E) is th e number of SE's 
exci t ed per unit energ y into an energy interval 
between E and E+dE per unit pa~~ le~~th of the 
fast e l ectro n ( units of cm •ev ). In a 
practical calculation this e nergy distribution is 
obtained numerically by using random numbers. By 
taking the minimum and the maximum e l e ctron energy 
to be EC= EF + ¢a nd E, respectively, the SE 
energy is given by using the uniform random number 
RE, i.e., 

E = ( RE•EF - A•Ec) / ( RE - A (6) 

where A= ( E - E ) / ( E - E ), ¢ is the work 
function and f isFthe surf~ce p~tential barrier. 
The minimum en~rgy E indicates that the calcula
tion of slow electr~n trajectory continues until 
the e lectron energy becomes equal to E. Energies 
l ess than this are of no interest in ~he present 
case. For Cu the values E = 7.00eV and ¢ 
4.45eV are assumed for the pr~sent calculation. 

The angular distribution of a SE excitation 
by a fast electron is assumed to be spherically 
symmetric. The position of a given excitation is 
determined at random within one step of the fast 
electron's trajectory. In a collision between a 
liberated SE and an electron of the specimen, the 
binding energy of the atomic electron is neglect
ed, and the classical binary collision model is 
adopted •. Then, the

2
electron energy after the 

collision 1s E'=E•cos 8, where 8 is the scatter
ing angle, and the energy of the other electron is 

E ''- E• . 28 A d' - sin • ccor ing to the assumption of 
sphe rically symmetric scattering in the center of 
mass system, taking into account the exclusion 
princ i p le and the motion of the atomic electrons, 
h'olff showed that the average electron energy 
after scattering E' is related to the electron 
energy before scattering E as follows[27]: 
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E' = a(E) • E ( 7) 

In this equation a(E) is nearly constant(=l/2) for 
E ~ 2 EF according to Wolff. Therefore, we will 
consider a(E) to be a constant a over all the 
energy range of interest. In order to express the 
energy distribution in Eq.(7) numerically, the 
uniform random number RC is used as in the equa-
tion E' E 

R = <J aE dE )/(I aE dE) (8) 
C O 0 

Using this RC, the energy of a scattered electron 
E' is obtained from 

E' E • R 1/2 
C 

(9) 

After E' is determined in Eq.(9), the scattering 
angle of this slow electron 8 is obtained. Th e 
mean free path for this c5llision process is 
determined from the following equation: 

, 
O

_
1

•
1O

c-2.6•log E + 4.3) 
A nm (E ~ 25eV) 
.,_s 0.5 nm (25eV < E ~ lOOeV) (10) 

s 

This equation was also introduced by Koshikawa and 
Shimizu[14] who have approximated experimental 
results for the escape depth of Auger electrons 
and it takes into account all energy loss process
es an electron will undergo in the specimen. The 
step length of a simulated SE is determined by 
considering its stragg ling from the mean valu e as 
in Eq.(4). The refraction of an e l ec tron traje c
tory at the specimen surface because of the poten
tial barrier is calculated by the momentum conser
vation law. Th e index of r efract ion n is given 
by: 

n = sin 0 / sin 0• = ( E /( E - EC ))
112 

(11) 

where 0 and 0• are the external and internal 
angles of the electron motion measured from a 
normal to the surface. 

Fig.1 illustrates the present simulation 
model of fast and slow electron behaviors in a 
specimen. Fig.2 shows an example of trajectories 
calculated by the present model of one PE incid e nt 
normally on a bulk Cu specimen at 6keV. In Fig.2 
one can see a meandering trajectory of the PE and 
SE cascades along it. In this sample calcula
tion, one can see a high energy SE generated in 
the m.iddle of the PE trajectory and it also has a 
meandering trajectory, with a ternary electron 
cascade taking place along that trajectory. The 
number of SE generated by the PE increases as the 
trajectory approaches the end of its range. For 
a slow electron the step becomes longer as the 
electron's energy becomes lower as expected from 
Eq.(1O); here, long straight lines in the figure 
are the steps of low energy electrons. Since 
every fast electron loos es its energy until O.lkeV 
and b ,ecomes a slow electron, one can see a cascade 
at the end of every fast electron trajectory. 

Number of SE generation 
Although S(E) in Eq.(5) gives an absolute 

number of SE excitations in one PE trajectory, 
contributions of plasmon and Auger electrons to 
the :SE production are not taken into account. 
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vacuum 

Specimen 

Primary 
Electron Emitted Electron 

El:50eV: BSE 
E<50eV: SE 

Generated 

Scattered 
Primary 
Electron 

'0 

~ Schematic diagram of the present simula
tion mode l. The generated e l ectron within th e 
specimen may be BSE or SE depending on whether 
the energy is above or below SOeV a t the speci
men surface , respectively. 

E 
c:: 

-50.0 
0 

:!= 50 .0 
o_ 
(l) 

0 

100 .0 

Lateral Distance (nm) 
0 

Cu 
6 keV 

50.0 

~ An example of simulated trajectories of 
one PE and generated fast and slow electrons in 
a bulk Cu specimen for 6keV PE incident normal 
to the surface. 

Also in the present calculation model of electron 
cascade, only binary collision is considered as a 
process slow electrons undergo. In order to 
compensate for these insufficienci es of the 
present treatment, S(E) is regarded here as a 
r e lativ e value. The number of SE generated by 
each PE is adjusted in the present model, and this 
is determined by a comparison with experimental 
results. Experimental results of Koshikawa and 
Shimizu[13] show that the total secondary yield 
from the specimen surface is about 1.0 for 2keV PE 
incident on Cu, and the simulation is set to g ive 
the same value at the same condition. A tenta-



M. Kotera, T. Kishida, and H. Suga 

tive value for the total number of SE generat ed by 
a lkeV PE is 25.8, if the PE trajectory lies 
entirely within the specimen. Of course the 
average number of SE generated in the specimen is 
less than this value because of the PE backscat
tering. The value of 25.8 is adopted to match the 
calculated results considering the backscattered 
PE and the low energy SE emission from the speci
men's surface with experimental results. Since 
it is assumed in this model that only electrons 
over O.lkeV produce SE's, the number of SE gen e r
ated in one step of the PE trajectory, if it is in 
the specimen, is calculated simply by the follow
ing equation: 

25.8°(PE energy loss in the step)/(1.0-0.1) (12) 

The energy loss in the equation is in keV unit. 
The total number of SE generated for a PE at E0keV 
is 25.8°(E -0.1)/(1.0-0.1) in one traJector y . 
Neglecting 8.1keV compared to E0 in this equation, 
a lOkeV PE produces basically 10 times more SE 
than a lkeV PE in the specimen. This is the same 
assumption which Shimizu and Murata[25], and 
Joy[ll] have made in their calculations. 

It should be noted that the e nergy conserva
tion law is not satisfied in the present simula
tion. For e xample, when a fast SE is generated 
from the PE traj ec tory, the e nerg y loss of the PE 
due to the ionization is not considered. Also, 
th e mechanism of SE production by p la smons s hould 
be treated more precisely which has a significant 
influence on the SE excitations. These aspects 
of the problem should be tr eated in a fut ur e 
s tudy. 

Results and Discussion 

Secondary and backscattering yields 
The total yield at 2keV PE incidence is 

adjusted to agree with the experimental result of 
Koshikawa and Shimizu.[13] With this adjustment, 
the calculated total secondary yield from the 
specimen <n+o) agrees quite well with experimental 
results of Koshikawa and Shimizu[13] and Joy[ll] 
over a wide range of energy as shown in Fig.3. 
Taking the ratio of the number of electrons emit
ted from the specimen surface whose energy is 
higher than 50eV to a number of the incident 
electrons, the backscattering yield (n) is ob
tained, In the same manner the ratio of a number 
of emitted electrons from the specimen surface 
whose energy is less than 50eV to a number of the 
incident electrons is the secondary yield {O). 
The energy dependence of the backscattering yield 
(n) is plotted in Fig.3, and again, very good 
agreement is found between the calc ulated result 
and the experimen tal result. A small hump is 
observed at around lkeV for the backscattering 
yield. This is because of an influence of slow 
electrons with the energy higher than 50eV as 
follows. Not only backscattered PE's, but also 
slow electrons whose energies are ranging from 
50eV to lOOeV are counted as backscattered elec
trons. Because the yield of low energy (<50eV) 
electrons 6 increases rapidly at low PE energies 
as shown in Fig.3, the number of such slow elec
trons (~50eV), which is included in the BSE, 
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u 
(I) 

1.0 

;;:: 0.5 

0 

a 

~ 

0 5 

Experiment 

a Koshikawa-Sh imizu (Ref.13) 
A Joy (Ref.11) 

10 15 20 
Beam Energy (keV) 

~ PE energy dependence of secondary yie l d at 
normal incidence to Cu surface. n + 6: total 
secondary yield, n: backscattering yield (it 
consists of real backscattered PE's and high 
ene rgy (50_5._E.5._lOOeV) slow e lectrons), and 6: real 
secondary yield (it consists of lo w ene rg y 
( 0_5._E<50eV ) slow e l ect ron s ). 

should increase for this PE energy. Since the 
calculated distributions of n+o and n agree with 
the experimental results quite well, the distribu
tion of 6 should be very close to the real one. 
Energy distribution 

Energy distributions of SE are shown in 
Figs.4(a) and (b) at 0.6 and 1.0keV PE incident 
normally on a bulk Cu specimen. They are normal
ized to have the same peak value. The calculated 
results are shown in the histogram. The experi
mental and the other theoretical values are quoted 
f rom a paper of Bindi et al.(4) The calculated 
result of Bindi et al. has been obtained based on 
the Boltzmann transport equation. The present 
results show good agreement with the other results 
shown in Fig.4. However, the peak energy is a 
little higher and the full width at half maximum 
of the distribution is a little larger for the 
present work compared to the other distributions. 
The difference is larger at the lower PE energy. 

In an analysis of SE emission by Koshikawa and 
Shimizu[14], the maximum escape depth of SE is 
about 7.5nm in Cu. The SE generation function for 
lkeV PE is not uniform within the escape depth. 
If a SE is generated at a shallow region from the 
surface, the SE can keep its generated energy with 
high probability in its transport toward the 
surface, then a contribution of high energy SE to 
the energy distribution is increased. On the 
other hand, fo r high energy PE incidence, PE 
penetrates through a layer of 10.0nm in a few 
initial steps and the spatial spread is very 
small. Then, the SE generation is qu ite uniform 
in the escape depth. In this situation the 
relative probability of the lower energy SE emis
sion from the surface is increased. This is the 
reason that the calculated peak shifts toward 
higher energy and the distribution becomes wider 
for lower energy PE. An electron beam energy 
dependence of the SE energy distribution is also 
found in the curves obtained experimentally by 
Koshikawa and Shimizu,[13] and Bindi et al.[2] 
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Fiq.4. Normal i zed energy distrib uti ons of enitted 
SE fron Cu for (a)0 . 6keV a nd (b )l. OkeV PE . 
"Cale." and " Exp ." show the calculated and the 
experimental r es ults, respectively . Experime ntal 
result s of Pi llon and Roptin a r e quoted from a 
paper of Bind i et al.(Ref.2) 

Depth distribution 
Th e depth distribution o f the SE emission 

from bulk Cu is shown in Fig . 5 at normal incident 
PE for 1 , 3 , and lOkeV. It shows the contribu
tion of th e SE generation at a certain depth 
within the specimen to the SE emission from th e 
specimen surface . This is a convoluted distr ibu
tion by the emission probability from the surface 
of the higher order slow e l e ctrons and the genera 
tion p ro babi lity of SE ' s at a certain depth of the 
specimen. As the depth i s small , both probabili
ties are high, and the contri bution near the 
surface to the SE emission is the largest . For 
high er energy primary electron incidence , the SE 
generation becomes uniform in depth and the dis
tribution reaches the deeper r egion . The distri 
butions at 3 and lOkeV electron incidence are very 
clo se tog e ther and they are also close to that 
calculat ed by the model proposed by Koshikawa and 
Shimizu[l4) , where neither prim a r y electron scat 
tering nor the energy l oss is considered. 
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~ Normalized depth distribution of the SE 
emission from Cu at (a)l.Ok eV , (b)3.0keV, and 
(c)lOkeV PE incident normal to the surface. 

Spatial distribution 
In the present analysis the Gaussian spatial 

distribution is assumed for the PE beam current 
density as expressed by the following: 

I(r) = I(O) • exp (-(r/ s )
2

) (13) 

Here, the beam diameter 2s is set 0.1nm . spa
tial distribution of SE or BSE can be clarified by 
the d iff erence between the distribution and the 
original Gaussian distribution . This assumption 
makes it e asi e r to quant i fy the emission region of 
signals . The radial distributions of SE and BSE 
for 1 and l OkeV PEW incidenc e are shown in Fig . 6 . 
These distributions show the theoretical resolu
tion of the SEM image . 

It should be noted that the r eg ion shown in 
Fig . 6 by the distribution is very narrow compared 
to th e elect ron range (for exam p l e , about 10.0nm 
in Cu at lkeV) . Therefore , this distribution i s 
produced main l y by th e influ ence of th e initial 
few steps of the simulat ed incid ent PE, and the 
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contribution of the PE backscattering (BSE) after 
the deep penetration in the specimen is very low 
and forms only the background. Thus, this SE 
intensity distribution is mainly determined by the 
amount of the energy loss done within initial few 
steps of the PE in the maximum SE escape depth 
from the specimen surface. Also , the BSE inten
sity is mainly determined by the Mott differential 
cross section at the scattering angle over 90 
degrees. 

Some 
figure. 

features of SE and BSE are seen in the 
The diameter at half intensity of the 

peak value for the beam center can be referred to 
as the emission region of the signal. Since the 
slope of the distribution for SE is more gentle 
than that of BSE, the following discussion can be 
made. The emission region of SE is wider than 
that of the BSE for both PE energies. The reason 
could be as follows. Since the energy of the BSE 
should be low at some distance from the PE inci
dent point, (l)a lower energy BSE can produce more 
SE 's effectively , and (2)a BSE will be recognize d 
as a SE if its energy is less than SOeV. (3)The 
generated SE itself can spread out in the wide 
range. The SE mean free path increases with 
decreasing energy , as shown in Eq .(1 0). and the 
mean free path is 3.525nm at the thr es hold energy 
to overcome the surface potential of Cu (11.4 5eV ). 

Both signals decrease as the PE energy in
creases. For BSE it can be understood by th e 

the Mott cross section for high back-fact 
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Fig . 6. Radial distributions of emitted ESE and SE 
from Cu surface for (a)l keV and (b )lO keV PE. 
Bro ken lin e shows the Gaussian current density 
distribution assumed here for the PE beam . 
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x 10-18[cm2 /strad.l 
0io 

~ The Mott differential cross section shown 
in a polar plot in Cu for l.OkeV and lOkeV e l ec
trons. 

scattering angles at lOkeV is much 
that of lkeV as shown in Fig .7. 

smaller than 
On the other 

hand, according to the Rao Sahib and Wittry equa
t~~?2(Eq .( 2)) the_energy loss is in proportion to 
E , and this 1s because the SE intensity de
creases at high incident energy as in Fig.6. 
Although the absolute intensity for SE seems to be 
higher than that of BSE and the difference in
creases with energy in the figure, it is not 
always true and these distributions cross at 
0 . 6keV PE incidence . However, the relative 
variation of each radial distribution of SE is 
almost independent of the PE energy. 

Usually it is assumed that the full width at 
hal f maximum of the spatial distribution of SE 
intensity is of the order of the mean free path of 
SE,[6,14) and for Cu it is from 5 to 20A .[ 24) 
The present result shows that the diameter at half 
maximum of the distribution for BSE is 0 .1 30nm and 
0.118nm for 2~=0 .ln m PE beam energies of 1 and 
lOkeV, respectively. For SE each of them is 
0.125nm and 0 .1 57nm, respectively. Although 
present values are much smaller than the value 
previously believed, a fairly large contribution 
to the SE emission comes from the tail of the 
distribution. 

It is generally believed that the resolution 
of a SE image is much better than that of a BSE 
image in the SEM, but the present calculation 
shows the opposite tendency at lOkeV. Alt hough 
the present calculated result shows a theoretical 
signal distribution, no surface feature is taken 
into account , such as topographic, elemental, and 
electric potential differences. Further quanti 
tative investigation is now in progress using the 
present simulation to simulate the image obtained 
in the SEM. 
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Conclusion 

A new Monte Carlo calculation model is pro
posed to simu l ate not only the primary electron 
behavior but also the secondary electron cascade 
in a specimen. Some of the calculated physical 
quantities agree well with the experimental re 
sults. The theoretical spatial resolution of SE 
and BSE images in the SEM is obtained . The 
pr esent calculation makes it possible to s i mula te 
the SEM image utilizing either SE or BSE signal. 
Future studies should be made in which the present 
si mulation is applied to vario us features of the 
specimen in o rder to determine the contrast and 
resoluti on that ca n be theoretically obtained . 

Symbol Table 

SEM Scanning electron microscope 
PE Primar y e lectron 
SE Secondary electron (the e ner gy< 50eV) 
BSE Backscattered electron (the energy~ 50eV) 
E An electron energy in the specimen 
E ' The energy of a scattered electron 
N 

0 

0 
f\ 
I(r) 

The number of atoms pe r unit volume 
The elect ronic charge 
The atom ic number 
The mean ionization po tentia l of the atom 
An energy of the fast electron 
The Ferm i energy 
The wave vector at the Fermi energy 
The surface potential ba rri er 
Step length of a fast electron 
Elastic mean free path of a fast electron 
Inelastic mean f r ee path of a slow electron 
Index of refraction fo r a slow electron 
passing through the specimen surface 
The external angles of the electron 
tra jec tor y measu r ed from a normal to the 
surface . 
The inte rnal angle of the e lectron 
trajectory measured from a normal to the 
surface. 
Secondary yie l d 
Backscattering yield 
Rad i al distribution of PE beam current 
density 
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Discussion with Reviewers 

D.C. Joy: It would be good to inc or por a te r e c ent 
improvements i n to the modeling of electron sto p 
p in g po we r into the authors' equation ( 1) an d (2). 
Tung et al.(1979) Surf . Sci.g, 427 , Ashley and 
Anderson . ( 1981 ). J . Electron Spectrosc . and Rel . 
Phenom. 24 , 127 , and more recently Joy and Luo 
(Scanning, to be pub l ished) have discussed formu-
lations of 
ment both 
data down 
Rao Sahib 

stopp i ng power which are in good agree
with each other and with experimental 
to ene r gies of only 30 to 40eV . The 
Wittry formulation is very poor and 

great l y ove r estima t es the stopping powe r for most 
materials especia l ly i n the i mportant energy range 
between 100 and 500eV. 
M. Cai l ler The validity of Eq . (10) 
scattering mean free path in Cu has to 

for the 
be dis -

cussed. 
Authors The Rao Sahib and Wittry equat i on has 
been obtained just by a mathematical extrapolation 
of the Bethe equation toward low energies . Com
parison is made between this equation and the 
theoretical expression of Tung et a l (l97 9 ) for the 
stopping power in Fig . A. The stop p ing power of 
the Rao Sahib and Wittry equation begins to over
estimate below 500eV. However, the distance 
which an electron at 500eV can travel is only 
about 5nm as seen in this figure until its energy 
is lOOeV . Thus , th e difference found here is 
just a tail of the e ntir e PE trajectory. On the 
other hand , one step length of the slow electron 
in th e cascade process at the cut-off energy 
(=E +¢) is 3 . 5nm, and the overestimation of the 
stoiping power for a fast electron is almost 
masked by the SE cascades in terms of its spatial 
distribution . 
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r e sul t of a th eore tic a l a pproa ch by Tung e t 
a 1(1 979) a nd t he es ti mated e f fec ti ve va lu es u sed 
in t he prese nt mode l. 
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For a slow electron , if we adopt the assump 
tion of Wolff (1954) , that is , the average energy 
loss of an electron in the cascade process is 
about half of its own energy , and using 
Eq.(10) in the text, we can estimate the stopping 
power . The results are also shown in Fig . A. 
However , as discussed in the text , the total 
amount of generated SE energies in the specimen is 
larger than the amount of PE energy lost in the 
present model, and this point should be refined in 
future . 

D.C. Joy In this paper the single scattering 
model uses step lengths S which are derived from 
the mean free path Af for elastic scattering using 
the formula s =- \fln(random number) and assumes 
that at every step a secondary electron is excit
ed . While the assumption is reasonable for use 
in calculating~ , since it is e l astic scatter i ng 
that determines the chance of backscattering, it 
is not a reasonable assumption for computing the 
SE yield since it implies that the yield is deter 
mined by elastic rather than inelastic effects. 
If the elastic mean free path A >>A. the inelastic 
mean free path , then more thag on~ SE would be 
excited; if A <<A. then we expect the number of SE 
generated to 5e higher than it shou l d be . 
Ganachaud and Cailler. Surf . Sci . 83 , 498 (1979) 
discuss these issues in detail and the a u thors 
should refer to this. It would be helpful for 
the reader to know the relative values of A and 
A for copper in the energy range lOOeV~lOkeV 

l 
si nc e th i s is the most impor ta nt e ne r gy regio n for 
SE pro d uc tio n . We th in k t hat th e mode l used 
pr evio us l y by Shi miz u e t a l (J . Phys . D9,1 01 ( 19 76)) 
whi c h wr it e s : 1/A =1 /A +1 /A. and s = -A l n ( ra ndom) 
is mor e phys i ca ll yTrea l is ti c : T 
Authors : The trajectory of the fast e lectron in 
the specimen determines the spatial source func
tion of SE generation. We used the single scat
tering model with continuous slowing down approxi
mation for fast electron. Since average energy 
loss in a step(~ elastic scattering mean free 
path) should be much smaller than the energy of 
the fast e lectron, the scattering angle by the 
inelastic collision is small . We did not use the 
inelastic scattering mean free path A. for the 
treatment of the fast electron in tfie present 
model . On the other hand, fo r slow e l ectrons, we 
considered only the sequence of binary collisions , 
and the elastic scattering was neg l ected . 

D,C. Joy This paper assumes the use of the 
Streitwo l f equation for SE excitation , and for 
copper the values E =7,00eV and ¢=4 . 45eV are used, 
Th i s implies thatFthe a u thor took N =l, But 
copper has N =10 for 3d e l ectrons , so i ris us ua l 
to set N =l ldfor the calcu l ation of SE excitation 
from va Yence electrons (see Shimizu et a l 1976 , 
Luo and Joy 1988). If N =11 then EF=35.86eV and 
we can have K (N=l l)>K (N~l) and this has a l arge 
effect on theFSE yie l d: Cou l d t he aut ho rs exp l a in 
why the contribution of the 3- d elec t rons has no t 
been considered? Does this not l ead to t he yield 
be i ng smaller than it should be? Is it poss i b l e 
that the choice of A f o r the scattering s t ep 
length he l ps cance l th~ error i n i gnor ing th e 3-d 
contrib ut i on? 
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Authors : As discussed in the paper of Shimizu et 
al (197 6) , taking 11 electrons as conduction 
electrons leads some inconsistency with the plas
mon energy. According to simple free energy 
theory, the plasmon energy (=1 9.6eV ) gives a 
different number of conduction electrons . Conse
quently, choosing 11 electrons for conduction band 
electrons may not be appropriate. Whereas, in 
the present approach, irresp ective of the value of 
the Fermi energy, total secondary yield (=o,n) is 
set to agree with the experimental data , the 
resultant calculated yields do not de pend on N. 
As the second order effect of taking different Ev, 
the shape of energy distribution of SE changes Fa 
little. 

D.C. Joy : In the text it is said that "the angu
lar distribution of an SE excited by a fast elec
tron is assumed to be spherically symmetric". 
Wolff(Phys.Rev.95,56(1954)) and Koshikawa and 
Shimizu(J.Phys.D2,13O3(1974)) both state that the 
scattering is spherically symmetric only in the 
case when the electron energy is below lOOeV. 
M. Cailler The angular distribution of the 
secondary electrons excited by a fast electron is 
assumed to be spherically symmetric whereas it was 
shown that in a free -el ectron model the excitation 
occurs preferentially in a normal direction to the 
fast electron trajectory. 
Authors : According to the paper of Koshikawa and 
Shimizu (Oyo Buturi,44,215(1975)), and Koshikawa 
(Thesis, Osaka University, p . 32 (1973)), the 
angular distribution of an SE excited by a fast 
electron is assumed to be spherically symmetric. 
Since the present model is based on th e ir mode l, 
we made the same assumption. For mor e precise 
argument on the angular distribution, we have to 
take into account the momentum transfer at each 
inelastic collision , as pointed out by the review
ers. 

R. Bindi Could you comment on the interest of an 
adjustment with experimental yield? 
M. Cailler: The primary electrons are assumed to 
continuously loose their energy along their path. 
This assumption does not allow a description of 
the elast ic backscattering coefficient. 
M. Cailler The adjustment of the number of 
secondary electrons generated by each primary one, 
by comparison with the experimental results limits 
the full bearing of the model. 
Authors : We are not so interested in th e spec
troscopy discussing fine structures of energy and 
angle of emitted SE's from a specimen surface. 
Our interest is in the SEM, especially its imaging 
mechanism of topographic, compositional, voltage 
contrasts. As the first order approximation, we 
applied the Koshikawa and Shimizu model (Ref.14). 
The important variables of energy and angular 
distribution in such discussions agree with exper
imental value with a re a sonable accuracy. For a 
more detailed discussion, it will be necessary to 
introduce more precise theories and models. 

R. Bindi : Have you tried to apply an excitation 
function more adapted to noble metals than the 
Streitwolf equation? What is the re ason why Cu 
was chosen? 
M. Cailler The secondary electron excitation 
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function used by the authors in the descrip tion of 
the secondary electron emission from copper was 
developed by Streitwolf for simple metals. 
Therefore, it cannot be employed without supple
ment ary controls for nobl e metals because of the 
presence of the d-band electrons in these noble 
metals. Furthermore, the Streitwolf excitation 
function completely neglects the screening effects 
which were sho wn to play an important role in the 
electron transitions. 
Authors : In the present study at first, we tried 
to follow and then, refined the work of Koshikawa 
and Shimizu (Ref.14), which used the Streitwolf 
equation a nd applied their model to Cu . 
excitation function of SE it is q uit e easy 
some more adapted equation in stead of the 
wolf eq uation. 

For the 
to ·use 
Streit-

R . Bindi : Can you say something about the contri
bution of elastic scattering of "slow e l ect rons" 
which seems to be neglected in your model. 
Authors : In the present mode l the cascad e scat
tering determines the rand omness of the slow 
electron movement in the specimen . If we tak e 
into account the elastic sc a tt eri ng for slow 
electrons the randomness will be in creased , and it 
leads to the angular distributi on of emitted SE's 
from the specimen surface closer to the cosine 
fun ct ion. 

H. Niedrig : Fig.3: n(>7k e V)=O.36 for Cu is dis
tinctly higher than experim e ntal values of many 
authors (f or a review see, e.g., H. Niedrig ,(1 982) 
Electron backscattering from thin films, J. Apl. 
Phys . 21_, Rl5-R49 , Fig.2O). Can you comment on 
this? 
Authors As discussed in the text, the total 
amount of generated SE energies in the specimen is 
larger than the amount of PE energy l os t in the 
present model. As far as calculated n is con
cerned, this is the rea so n why the p r esent mode l 
gives a larger value than it should. 

H. Niedrig : What is the physical r easo n for the 
depth distributions of the SE emission being so 
close together (Fig.5) although the primary energy 
ranges from 1 to lOkeV? 
Authors : The maximum escape depth of slow elec
tron is about 10nm independent of the PE energy . 
The difference depending on PE energy comes from 
the uniformity of SE generation rat e with depth. 
The electron range of l keV PE is about 10nm, and 
the SE generation shows a peak in some depth 
within 10nm. On th e other hand, SE generation 
for lOkeV PE in depth of 10nm is quite uniform. 
However, SE's generated deeper in the specimen 
have less contribution to the yield, and the dif
ference in the SE generation rat e wit h depth is 
les s effective to the depth distribution of SE 
emission. As the result, the depth distribution 
of SE is close together, but there is an energy 
dependence as shown in Fig.5. 
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