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scanning electron microscopy. In the present
paper, this modified Koshikawa and Shimizu's model
is presented and the performance is shown over a
wide range of incident PE energy.[18,19]

Simulation model

In the present simulation, if an electron has
an energy higher than 0.lkeV, it is considered to
be a "fast electron" and the single scattering
model{16,17] is used; if its energy is lower than
0.1lkeV, the -electron is recognized as a "slow
electron", and the electron cascade model is used.
Also according to the usual convention if an
electron emitted from the specimen surface has an
energy greater than 50eV, it 1is considered a
backscattered electron (BSE); if it has an energy
less than 50eV, it is taken as a SE. These
classifications are summarized in Table 1.

Single scattering model

In the present simulation of fast electron
scattering in a specimen, the electron energy loss
is calculated by using the modified Bethe equation
of Rao Sahib and Wittry[21], namely:

_dE _2xe*N m(1.166E)
ds ™~ E J , for E > 6.338J (1)
_%:1.2267?33 , for E < 6.3387 (2)

in keV/cm unit. where J is the mean ionization
potential of the atom given by the equation of
B96??§ and Seltzer(l], namely: J = 9,762 + 58.5
Z (eV).

For the elastic scattering cross section of
an electron, the Mott cross section is used, since
this cross section is believed to remain accurate
at low energies and for heavy elements([16]. The
cross section per unit solid angle in a direction
8, i.e., the differential cross section is ex-
pressed by the following equation for an unpolar-
ized incident beam:

do= if(@)F + Ig(o) &

in cm2/strad. unit. The functions £(0) and g(0)
are the scattering amplitudes which are given by
the partial wave expansion analysis of the rela-
tivistic wave equation of Dirac(l6l].

Equation (3) is calculated numerically, and
the differential cross sections are listed in a
table for many electron energies. The cross
section at an energy of interest can be obtained
by an interpolation from the values in the table,

These elastic and inelastic basic equations
are combined in the single scattering model(1l6].
Electrons are assumed to loose their energy along
the path continuously according to Egs.(l) and
(2). A change in direction is assumed to be
caused by elastic scattering events only, and this
is calculated using Eq.(3). Therefore, the
trajectory is divided into many steps, with step
length basically equal to the mean free path A
for elastic scattering. In order to take into
account variation in step length s, the step
length s 1is calculated using a uniform random
number R_ distributed from O to 1 as given by the

following:
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Table 1. The classification of electrons in the
present model.

Electron Simulation Electrons
energy Definition model emitted from
surface
Eq L E < 50eV  slow cascade SE
electron
50eV¢< E <100eV slow cascade BSE
electron
100ev ¢ E fast single BSE
electron scattering
s=-A_*"1ln R 4
f S (4)

The electron trajectory of the fast electron 1is
simulated until the electron escapes from the
surface, or until its energy falls to O.lkeV,

Cascade model

The calculation model for slow electrons is
basically the same as proposed by Koshikawa and
Shimizu{l4l}. For the SE excitation function, the
Streitwolf equation[26] is used, namely:

43, a2
S(E) = ek 7/ (3ME (E-E)") (5)

In this equation, S(E) is the number of SE's
excited per unit energy into an energy interval
between E and E+dE per unit paEE leg?th of the

fast electron ( units of cm eV 7)., In
practical calculation this energy distribution is
obtained numerically by using random numbers. By

taking the minimum and the maximum electron energy
to be E,=E_ + ¢ and E_, respectively, the SE
energy is given by using ghe uniform random number

R i.€.,

E'
E= (RSE_-A%E_ )/ (R, -2) (6)
where A= (E_-E_ )/ (E -E,), $ is the work
function and E is the surface potential barrier.
The minimum energy E_ indicates that the calcula-
tion of slow electron trajectory continues wuntil
the electron energy becomes equal to E_., Energies
less than this are of no interest in the present
case., For Cu the values E_ = 7,00ev and @ =
4.45eV are assumed for the present calculation.
The angular distribution of a SE excitation
by a fast electron is assumed to be spherically
symmetric, The position of a given excitation 1is
determined at random within one step of the fast
electron's trajectory. In a collision between a
liberated SE and an electron of the specimen, the
binding energy of the atomic electron is neglect-
ed, and the classical binary collision model is
adopted. Then, the_electron energy after the
collision is E'=E®cos 0, where 0 is the scatter-
ing angle, and the energy of the other electron is

E''=E*sin“0, According to the assumption of
spherically symmetric scattering in the center of
mass system, taking into account the exclusion
principle and the motion of the atomic electrons,
Wolff showed that the average electron energy
after scattering E' is related to the electron
energy before scattering E as follows[27]:
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E' = a(E) * E (7)

In this equation O(E) is nearly constant(=1/2) for
ER 2E according to Wolff. Therefore, we will

consider Q(E) to be a constant @ over all the
energy range of interest. 1In order to express the
energy distribution in Eq.(7) numerically, the

uniform random number RC is used as in the equa-
’

tion E E
R, = (J QE dE )/(J QE dE ) (8)
0 0

Using this R_, the energy of a scattered electron
E' is obtained from

e = £ rY? (9)

c

After E' is determined in Eq.(9), the scattering
angle of this slow electron O is obtained. The
mean free path for this coOllision process is
determined from the following equation:

(-2.6%*1log E + 4.3)

0.1*10 nm (E ¢ 25eV)

® = 0.5 nm (25eV ¢ E ¢ 100eV) (10)

s

A
A

This equation was also introduced by Koshikawa and
Shimizu[l4] who have approximated experimental
results for the escape depth of BAuger electrons
and it takes into account all energy loss process-
es an electron will undergo in the specimen. The
step 1length of a simulated SE is determined by
considering its straggling from the mean value as
in Eq.(4). The refraction of an electron trajec-
tory at the specimen surface because of the poten-
tial barrier is calculated by the momentum conser-
vation law. The index of refraction n is given
by:

2z

n=sin© / sin ©' = ( E /( E - E. )
where O and ©O' are the external and internal
angles of the electron motion measured from a
normal to the surface,

Fig.l illustrates the present simulation
model of fast and slow electron behaviors in a
specimen. Fig.2 shows an example of trajectories
calculated by the present model of one PE incident
normally on a bulk Cu specimen at 6keV. In Fig.2
one can see a meandering trajectory of the PE and
SE cascades along it. In this sample calcula-
tion, one can see a high energy SE generated in
the middle of the PE trajectory and it also has a
meandering trajectory, with a ternary electron
cascade taking place along that trajectory. The
number of SE generated by the PE increases as the
trajectory approaches the end of its range. For
a slow electron the step becomes longer as the
electron's energy becomes lower as expected from
Eq.(10); here, long straight lines in the figure
are the steps of low energy electrons, Since
every fast electron looses its energy until 0,lkeV
and becomes a slow electron, one can see a cascade
at the end of every fast electron trajectory.

Number of SE generation

Although S(E) 1in Eq.(5) gives an absolute
number of SE excitations in one PE trajectory,
contributions of plasmon and Auger electrons to
the SE production are not taken into account,

Primary
Electron Emitted Electron
. E&50eV : BSE
0'y E<50eV : SE
1 '8
Vacuum / ! b/
Generated
Specimen Electron

(slow)

Back-
scattered
Electron

Cascade

Generated Process

Electron
(fast)

Scattered
Primary
Electron

Fig.l. Schematic diagram of the present simula-
tion model. The generated electron within the
specimen may be BSE or SE depending on whether
the energy is above or below 50eV at the speci-
men surface, respectively.

Lateral Distance (nm)

500 }

Depth (nm)

1000 Ly

Fig.2. An example of simulated trajectories of
one PE and generated fast and slow electrons in
a bulk Cu specimen for 6kev PE incident normal
to the surface.

Also in the present calculation model of electron
cascade, only binary collision is considered as a
process slow electrons undergo. In order to
compensate for these insufficiencies of the
present treatment, S(E) is regarded here as a
relative value. The number of SE generated by
each PE is adjusted in the present model, and this
is determined by a comparison with experimental
results., Experimental results of Koshikawa and
Shimizu[13] show that the total secondary yield
from the specimen surface is about 1.0 for 2keV PE
incident on Cu, and the simulation is set to give
the same value at the same condition. A  tenta-




tive value for the total number of SE generated by
a 1lkev PE is 25.8, if the PE trajectory lies
entirely within the specimen. Of course the
average number of SE generated in the specimen is
less than this value because of the PE backscat-
tering. The value of 25.8 is adopted to match the
calculated results considering the backscattered
PE and the low energy SE emission from the speci-
men's surface with experimental results. Since
it 1is assumed in this model that only electrons
over 0O.lkeV produce SE's, the number of SE gener-
ated in one step of the PE trajectory, if it is in

the specimen, is calculated simply by the follow-—
ing equation:

25.8°(PE energy loss in the step)/(1.0-0.1) (12)
The energy loss in the equation is in keV unit.

The total number of SE generated for a PE at E keV
is 25.,8°(E _~0,1)/(1.,0-0.1) in one trajectory.
Neglecting 8.1keV compared to EO in this equation,
a 10keV PE produces basically 10 times more SE
than a lkeV PE in the specimen. This is the same
assumption which Shimizu and Murata(25], and
Joy[11l) have made in their calculations.

It should be noted that the energy
tion law is not satisfied in the present
tion. For example, when a fast SE is generated
from the PE trajectory, the energy loss of the PE
due to the ionization is not considered. Also,
the mechanism of SE production by plasmons should
be treated more precisely which has a significant
influence on the SE excitations, These aspects
of the problem should be treated in future
study.

conserva-
simula-

a

Results and Discussion

Secondary and backscattering vyields

The total vyield at 2keVv PE incidence 1is
adjusted to agree with the experimental result of
Koshikawa and Shimizu.{13] With this adjustment,
the calculated total secondary vyield from the
specimen (n+d8) agrees quite well with experimental
results of Koshikawa and Shimizu{13] and Joy(1ll]
over a wide range of energy as shown in Fig.3.
Taking the ratio of the number of electrons emit-
ted from the specimen surface whose energy 1is
higher than ©50eV to a number of the incident
electrons, the backscattering yield (N) 1is ob-
tained, In the same manner the ratio of a number
of emitted electrons from the specimen surface
whose energy is less than 50eV to a number of the
incident electrons is the secondary yield (8).
The energy dependence of the backscattering vyield
(n) 1is plotted in Fig.3, and again, very good
agreement 1is found between the calculated result
and the experimental result. A small hump is
observed at around lkeV for the backscattering
yield. This is because of an influence of slow
electrons with the energy higher than ©50eV as
follows., Not only backscattered PE's, but also
slow electrons whose energies are ranging from
50eV to 100eV are counted as backscattered elec-
trons. Because the yield of low energy (<50eV)
electrons ¢ increases rapidly at low PE energies
as shown in Fig.3, the number of such slow elec-
trons (>50eV), which is included in the BSE,
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Fig.3. PE energy dependence of secondary yield at
normal incidence to Cu surface. n+ &: total
secondary vyield, nN: backscattering yield (it
consists of real backscattered PE's and high
energy (50<E<100eV) slow electrons), and §: real
secondary yield (it consists of low energy
(0<E<50eV) slow electrons).
should increase for this PE energy. Since the
calculated distributions of n+§ and n agree with

the experimental results quite well, the distribu-
tion of & should be very close to the real one.
Enerqgy distribution
Energy distributions of SE

Figs.4(a) and (b) at 0.6 and 1.0kev
normally on a bulk Cu specimen.,
ized to have the same peak value, The calculated
results are shown in the histogram. The experi-
mental and the other theoretical values are quoted
trom a paper of Bindi et al.(4) The calculated
result of Bindi et al. has been obtained based on
the Boltzmann transport equation. The present
results show good agreement with the other results

are shown in
PE incident
They are normal-

shown 1in Fig.4. However, the peak energy is a
little higher and the full width at half maximum
of the distribution is a little larger for the

present work compared to the other distributions.
The difference is larger at the lower PE energy.
In an analysis of SE emission by Koshikawa and
Shimizu(l4], the maximum escape depth of SE is
about 7.5nm in Cu, The SE generation function for
lkeVv PE is not uniform within the escape depth.
If a SE is generated at a shallow region from the
surface, the SE can keep its generated energy with
high probability in its transport toward the
surface, then a contribution of high energy SE to
the energy distribution is increased. On the
other hand, for high energy PE incidence, PE
penetrates through a layer of 10.0nm in a few
initial steps and the spatial spread 1is very
small. Then, the SE generation is quite wuniform
in the escape depth. In this situation the
relative probability of the lower energy SE emis-
sion from the surface is increased. This is the
reason that the calculated peak shifts toward
higher energy and the distribution becomes wider
for lower energy PE. An electron beam energy
dependence of the SE energy distribution is also
found 1in the curves obtained experimentally by
Koshikawa and Shimizu,[13] and Bindi et al.[2]
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1.0

——— Present model
erses Bindi et al(Calc))
Bindi et al. (Exp.)
Pillon-Roptin (Exp.)

o
&)

Normalized Intensity

20
Energy (eV)

—— Present model
s Bindi et al. (Calc,)
(Reft.2
Bindi et al. (Exp.)
(Ref.2)
————— - Pillon-Roptin
(Exp.)

Normalized Intensity
o
&)

0 10 20
Energy (eV)

Fig.4. Normalized energy distributions of emitted
SE from Cu for (a)0.6kev and (b)l.OkeVv PE,
"Calc.”" and “Exp." show the calculated and the
experimental results, respectively. Experimental
results of Pillon and Roptin are quoted from a
paper of Bindi et al.(Ref.2)
Depth distribution

The depth distribution of the SE emission
from bulk Cu is shown in Fig.5 at normal incident
PE for 1, 3, and 1lOkeV. It shows the contribu-
tion of the SE generation at a certain depth
within the specimen to the SE emission from the

specimen surface, This is a convoluted distribu-
tion by the emission probability from the surface
of the higher order slow electrons and the genera-
tion probability of SE's at a certain depth of the
specimen, As the depth is small, both probabili-
ties are high, and the contribution near the
surface to the SE emission is the largest, For
higher energy primary electron incidence, the SE
generation becomes uniform in depth and the dis-
tribution reaches the deeper region. The distri-
butions at 3 and 10keV electron incidence are very

close together and they are also close to that
calculated by the model proposed by Koshikawa and
Shimizufl4], where neither primary electron scat-

tering nor the energy loss is considered.
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Fig.5. Normalized depth distribution of the SE
emission from Cu at (a)l.0keV, (b)3.0kev, and
(c)10kev PE incident normal to the surface.

Spatial distribution

In the present analysis the Gaussian spatial
distribution is assumed for the PE beam current
density as expressed by the following:

2
I(r) = I(0) * exp(—(r/&)7) (13)
Here, the beam diameter 2§ is set O.lnm., spa-
tial distribution of SE or BSE can be clarified by
the difference between the distribution and the
original Gaussian distribution. This assumption

makes it easier to quantify the emission region of

signals, The radial distributions of SE and BSE
for 1 and 10keV PEW incidence are shown in Fig,6.
These distributions show the theoretical resolu-

tion of the SEM image.

It should be noted that the region shown 1in
Fig.6 by the distribution is very narrow compared
to the electron range (for example, about 10.0nm
in Cu at 1lkeV). Therefore, this distribution 1is
produced mainly by the influence of the 1initial
few steps of the simulated incident PE, and the
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Conclusion

A new Monte Carlo calculation model is
posed to simulate not only the primary
behavior but also the secondary electron cascade
in a specimen. Some of the calculated physical
quantities agree well with the experimental
sults. The theoretical spatial resolution of
and BSE images in the SEM 1is obtained.
present calculation makes it possible to simulate
the SEM image utilizing either SE or BSE signal.
Future studies should be made in which the present
simulation 1is applied to various features of the
specimen 1n order to determine the contrast and
resolution that can pe theoretically obtained.

pro-
electron

re-
SE
The

Symbol Table

Scanning electron microscope

Primary electron

Secondary electron (the energy < 50eV)
Backscattered electron (the energy > 50eV)
An electron energy in the specimen

The energy of a scattered electron

The number of atoms per unit volume

The electronic charge

The atomic number

The mean ionization potential of the atom
An energy of the fast electron

The Fermi energy

The wave vector at the Fermi energy

The surface potential barrier

Step length of a fast electron

Elastic mean free path of a fast electron
Inelastic mean free path of a slow electron
Index of refraction for a slow electron
passing through the specimen surface

The external angles of the electron
trajectory measured from a normal to the
surface.

The internal angle of the electron
trajectory measured from a normal to the
surface.

§ Secondary yield

n Backscattering yield

I(r) Radial distribution of PE beam current
density

O = Mg

Hy

O>>0mxXxmmaG N Z2Mmm
0
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Discussion with Reviewers

D.C. Joy : It would be good to incorporate recent
improvements into the modeling of electron stop-
ping power into the authors' equation (1) and (2).
Tung et al.(1979) Surf. Sci.8l, 427, Ashley and
Anderson. (1981), J. Electron Spectrosc. and Rel.
Phenom. 24, 127, and more recently Joy and Luo
(Scanning, to be published) have discussed formu-
lations of stopping power which are in good agree-
ment both with each other and with experimental
data down to energies of only 3C to 40ev. The
Rao Sahib Wittry formulation is very poor and
greatly overestimates the stopping power for most
materials especially in the important energy range
between 100 and 500eV,

M. Cailler : The wvalidity of Eq.(1l0) for the
scattering mean free path in Cu has to be dis-
cussed,

Authors : The Rao Sahib and Wittry eguation has
been obtained just by a mathematical extrapolation
of the Bethe equation toward low energies. Com-
parison is made between this egquation and the
theoretical expression of Tung et al(1979) for the
stopping power in Fig.A. The stopping power of
the Rao Sahib and Wittry equation begins to over-
estimate below 500eV. However, the distance
which an electron at 500eV can travel is only
about 5nm as seen in this figure until its energy
is 100eV, Thus, the difference found here 1is
just a tail of the entire PE trajectory. On the
other hand, one step length of the slow electron
in the cascade process at the cut-off energy
(=£_+%) is 3.5nm, and the overestimation of the
stopping power for a fast electron is almost
masked by the SE cascades in terms of its spatial
distribution.

S 'll LI 'll T 'II T T T T T
= Koshikawa- <——» RaoSahib-Wittry 4
2 Shimizu H
g10%E .
[ = - -
~ L i
>
L o -
510" -
% - ]
a B — Present model 7
g T / ___ Tung etal(1979) :
a,n0 / —
al0¥ ]
[ N / J
n  F /
/
L / B
10—1 11 11' T ||l 1 ||| Lol o4
109 10! 102 103 104 108

Electron energy above Fermi level (eV)

Fig.A. A comparison in stopping power between the
result of a theoretical approach by Tung et
al(1979) and the estimated effective values used
in the present model,
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For a slow electron, if we adopt the assump-
tion of Wolff (1954), that is, the average energy
loss of an electron in the cascade process 1is

about half of its own energy, and using
Eg.(10) in the text, we can estimate the stopping
power. The results are also shown in Fig.A.

However, as discussed in the text, the total
amount of generated SE energies in the specimen is
larger than the amount of PL energy lost in the
present model, and this point should be refined in
future.

D.C. Joy : 1In this paper the single scattering
model wuses step lengths S which are derived from
the mean free path A, for elastic scattering using
the formula S=-A_ln(random number) and assumes
that at every step a secondary electron is excit-
ed, While the assumption is reasonable for use
in calculating N, since it is elastic scattering
that determines the chance of backscattering, it
is not a reasonable assumption for computing the
SE yield since it implies that the yield is deter-
mined by elastic rather than inelastic effects.
If the elastic mean free path A »>X, the inelastic
mean free path, then more than oné SE  would be
excited; if A <<A, then we expect the number of SE
generated to Be higher than it should be,
Ganachaud and Cailler. Surf. Sci. 83, 498 (1979)
discuss these issues in detail and the authors
should refer to this. It would be helpful for
the reader to know the relative values of A and
A, for copper in the energy range 100eV-10keV
since this is the most important energy region for
SE production. We think that the model used
previously by Shimizu et al(J.Phys.D9,101 (1976))
which writes: 1/A =1/>\e+l/)\i and S=-XTln(random)
is more physically realistic.,

Authors : The trajectory of the fast electron 1in
the specimen determines the spatial source func-—

tion of SE generation, We used the single scat-
tering model with continuous slowing down approxi-—
mation for fast electron. Since average ecnergy

loss in a step (= elastic scattering mean free
path) should be much smaller than the energy of
the fast electron, the scattering angle by the
inelastic collision is small, We did not use the
inelastic scattering mean free path A, for the
treatment of the fast electron in the present
model. On the other hand, for slow electrons, we
considered only the sequence of binary collisions,
and the elastic scattering was neglected.

D.C, Joy : This paper assumes the use of the
Streitwolf equation for SE excitation, and for
copper the values E_=7.00eV and $=4,45eV are used.
This implies that the author took N =1, But
copper has N_.=10 for 3d electrons, so it is wusual
to set N =11 for the calculation of SE excitation
from valence electrons (see Shimizu et al 1976,
Luo and Joy 1988). If Nv=ll then EF=35.86eV and
we can have K_(N=11)>K_(N=1) and this has a large
effect on the SE yield. Could the authors explain
why the contribution of the 3-d electrons has not
been considered? Does this not lead to the yield
being smaller than it should be? Is it possible
that the choice of A for the scattering step
length helps cancel thg error in ignoring the 3-d
contribution?
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Authors : As discussed in the paper of Shimizu et
al (1976), taking 11 electrons as conduction
electrons leads some inconsistency with the plas-
mon energy. According to simple free energy
theory, the plasmon energy (=19.6eV) gives a
different number of conduction electrons. Conse-
quently, choosing 11 electrons for conduction band
electrons may not be appropriate. Whereas, in
the present approach, irrespective of the value of
the Fermi energy, total secondary yield (=8+n) is
set to agree with the experimental data, the
resultant calculated yields do not depend on Nv.
As the second order effect of taking different E_,
the shape of energy distribution of SE changes a
little,

D.C. Joy : In the text it is said that "the
lar distribution of an SE excited by a fast

angu-
elec-

tron 1s assumed to be spherically symmetric".
Wolff(Phys.Rev.95,56(1954)) and Koshikawa  and
Shimizu(J.Phys.D7,1303(1974)) both state that the
scattering is spherically symmetric only in the
case when the electron energy is below 100eV,

M. Cailler : The angular distribution of the
secondary electrons excited by a fast electron is
assumed to be spherically symmetric whereas it was

shown that in a free-electron model the excitation
occurs preferentially in a normal direction to the
fast electron trajectory.

Authors : According to the paper of Koshikawa and
Shimizu (Oyo Buturi,44,215(1975)), and Koshikawa
(Thesis, Osaka University, p.32 (1973)), the
angular distribution of an SE excited by a fast
electron is assumed to be spherically symmetric.
Since the present model is based on their model,
we made the same assumption. For more precise
argument on the angular distribution, we have to
take into account the momentum transfer at each
inelastic collision, as pointed out by the review-
ers,

R, Bindi : Could you comment on the interest of an
adjustment with experimental yield?
M. Cailler : The primary electrons are assumed to

continuously loose their energy along their path.
This assumption does not allow a description of
the elastic backscattering coefficient.

M. Cailler : The adjustment of the number of

secondary electrons generated by each primary one,
by comparison with the experimental results limits
the full bearing of the model.

Authors : We are not so interested in the
troscopy discussing fine structures of energy and
angle of emitted SE's from a specimen surface.
Our interest is in the SEM, especially its imaging
mechanism of topographic, compositional, voltage
contrasts. As the first order approximation, we
applied the Koshikawa and Shimizu model (Ref.14).
The important variables of energy and angular
distribution in such discussions agree with exper-
imental value with a reasonable accuracy. For a
more detailed discussion, it will be necessary to
introduce more precise theories and models.

spec~

R, Bindi : Have you tried to apply an excitation
function more adapted to noble metals than the
Streitwolf equation? What is the reason why Cu

was chosen?

M, Cailler : The secondary electron excitation
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function used by the authors in the description of
the secondary electron emission from copper was
developed by Streitwolf for simple metals.
Therefore, it cannot be employed without supple-
mentary controls for noble metals because of the
presence of the d-band electrons in these noble
metals. Furthermore, the Streitwolf excitation
function completely neglects the screening effects
which were shown to play an important role in the
electron transitions.

Authors : In the present study at first, we tried
to follow and then, refined the work of Koshikawa
and Shimizu (Ref.14), which used the Streitwolf
equation and applied their model to Cu. For the
excitation function of SE it is quite easy to ‘'use
some more adapted equation instead of the Streit-
wolf equation.

R. Bindi : Can you say something about the contri-
bution of elastic scattering of "slow electrons"
which seems to be neglected in your model.
Authors : In the present model the cascade
tering determines the randomness of the
electron movement in the specimen. If we
into account the elastic scattering for slow
electrons the randomness will be increased, and it
leads to the angular distribution of emitted SE's
from the specimen surface closer to the cosine
function,

scat-
slow
take

H, Niedrig Fig.3: N(>7kev)=0,.36 for Cu is dis-
tinctly higher than experimental values of many

authors (for a review see, e.g., H. Niedrig, (1982)

Electron backscattering from thin films, J. Aapl.
Phys. 53, R15-R49, Fig.20). Can you comment on
this?

Authors : As discussed in the text, the total
amount of generated SE energies in the specimen is
larger than the amount of PE energy lost in the
present model. As far as calculated N is con-
cerned, this is the reason why the present model
gives a larger value than it should.

H. Niedrig : What is the physical reason for the
depth distributions of the SE emission being so

close together (Fig.5) although the primary energy
ranges from 1 to 10keVv?

Authors : The maximum escape depth of slow elec-
tron is about 10nm independent of the PE energy.
The difference depending on PE energy comes from
the wuniformity of SE generation rate with depth,
The electron range of lkeV PE is about 10nm, and
the SE generation shows a peak in some depth
within 10nm. On the other hand, SE generation
for 10keV PE in depth of 10nm is quite uniform.
However, SE's generated deeper in the specimen
have less contribution to the yield, and the dif-
ference in the SE generation rate with depth is
less effective to the depth distribution of SE
emission, As the result, the depth distribution
of SE is close together, but there is an energy
dependence as shown in Fig.5.
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