1,758 research outputs found

    MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers

    Full text link
    The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C.Comment: 12 pages, 4 figure

    Molecular Genetics of T Cell Development

    Get PDF
    T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment

    Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto

    Get PDF
    Numerous species of Lepidoptera have transparent wings, which often possess scales of altered morphology and reduced size, and the presence of membrane surface nanostructures that dramatically reduce reflection. Optical properties and anti-reflective nanostructures have been characterized for several ‘clearwing’ Lepidoptera, but the developmental basis of wing transparency is unknown. We apply confocal and electron microscopy to create a developmental time-series in the glasswing butterfly, Greta oto, comparing transparent and non-transparent wing regions. We find that scale precursor cell density is reduced in transparent regions, and cytoskeletal organization differs between flat scales in opaque regions, and thin, bristle-like scales in transparent regions. We also reveal that sub-wavelength nanopillars on the wing membrane are wax-based, derive from wing epithelial cells and their associated microvillar projections, and demonstrate their role in enhancing-anti-reflective properties. These findings provide insight into morphogenesis of naturally organized micro- and nanostructures and may provide bioinspiration for new anti-reflective materials

    Effect of hydrogen on ground state structures of small silicon clusters

    Full text link
    We present results for ground state structures of small Sin_{n}H (2 \leq \emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In particular, we focus on how the addition of a hydrogen atom affects the ground state geometry, total energy and the first excited electronic level gap of an Sin_{n} cluster. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen bonds with two silicon atoms only in Si2_{2}H, Si3_{3}H and Si5_{5}H clusters, while in other clusters (i.e. Si4_{4}H, Si6_{6}H, Si7_{7}H, Si8_{8}H, Si9_{9}H and Si10_{10}H) hydrogen is bonded to only one silicon atom. Also in the case of a compact and closed silicon cluster hydrogen bonds to the cluster from outside. We find that the first excited electronic level gap of Sin_{n} and Sin_{n}H fluctuates as a function of size and this may provide a first principles basis for the short-range potential fluctuations in hydrogenated amorphous silicon. Our results show that the addition of a single hydrogen can cause large changes in the electronic structure of a silicon cluster, though the geometry is not much affected. Our calculation of the lowest energy fragmentation products of Sin_{n}H clusters shows that hydrogen is easily removed from Sin_{n}H clusters.Comment: one latex file named script.tex including table and figure caption. Six postscript figure files. figure_1a.ps and figure_1b.ps are files representing Fig. 1 in the main tex

    Modified Spin Wave Thoery of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet

    Full text link
    The ground state of the square lattice bilayer quantum antiferromagnet with nearest and next-nearest neighbour intralayer interaction is studied by means of the modified spin wave method. For weak interlayer coupling, the ground state is found to be always magnetically ordered while the quantum disordered phase appear for large enough interlayer coupling. The properties of the disordered phase vary according to the strength of the frustration. In the regime of weak frustration, the disordered ground state is an almost uncorrelated assembly of interlayer dimers, while in the strongly frustrated regime the quantum spin liquid phase which has considerable N\'eel type short range order appears. The behavior of the sublattice magnetization and spin-spin correlation length in each phase is discussed.Comment: 15 pages, revtex, figures upon reques

    Recurrent Hypoglycaemia in a Patient with Metastatic Pancreatic Carcinoma

    Get PDF
    The patient's recurrent hypoglycaemia was found to be due to non-islet cell tumour hypoglycaemia
    corecore