799 research outputs found

    Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: revtex4; 4+ pages, 5 figure

    Bath induced coherence and the secular approximation

    Get PDF
    Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: does system-bath or inter-system coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution to different Markovian master equations, we find that a smooth crossover of the equations-of-motion between dominant inter-system and system-bath coupling exists - but requires a non-secular master equation. We predict a singular behaviour of the dynamics, and show that the ultimate failure of non-secular equations of motion is essentially a failure of the Markov approximation. Our findings justify the use of time-local theories throughout the crossover between system-bath dominated and inter-system-coupling dominated dynamics.PostprintPeer reviewe

    Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa

    Get PDF
    Inter-annual variability in primary production and ecosystem respiration was explored using eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed primarily for temperate flux sites. They furthermore do not take into account the decrease in respiration at high soil temperatures. An artificial neural network (ANN) model incorporating these features predicted measured fluxes accurately (MAE 0.42 gC/m<sup>2</sup>/day), and was able to represent the seasonal patterns of photosynthesis and respiration at the site. The amount of green leaf area (indexed using satellite-derived estimates of fractional interception of photosynthetically active radiation <i>f</i><sub>APAR</sub>), and the timing and magnitude of rainfall events, were the two most important predictors used in the ANN model. These drivers were also identified by multiple linear regressions (MLR), with strong interactive effects. The annual integral of the filled NEE data was found to range from −138 to +155 g C/m<sup>2</sup>/y over the 5 year eddy covariance measurement period. When applied to a 25 year time series of meteorological data, the ANN model predicts an annual mean NEE of 75(±105) g C/m<sup>2</sup>/y. The main correlates of this inter-annual variability were found to be variation in the amount of absorbed photosynthetically active radiation (APAR), length of the growing season, and number of days in the year when moisture was available in the soil

    One-by-one trap activation in silicon nanowire transistors

    Full text link
    Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been identified as the main source of noise at low frequency. It often originates from an ensemble of a huge number of charges trapping and detrapping. However, a deviation from the well-known model of 1/f noise is observed for nanoscale MOSFETs and a new model is required. Here, we report the observation of one-by-one trap activation controlled by the gate voltage in a nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale FETs. We demonstrate that the Coulomb repulsion between electronically charged trap sites avoids the activation of several traps simultaneously. This effect induces a noise reduction by more than one order of magnitude. It decreases when increasing the electron density in the channel due to the electrical screening of traps. These findings are technologically useful for any FETs with a short and narrow channel.Comment: One file with paper and supplementary informatio

    Clearance of human IgG1-sensitised red blood cells in vivo in humans relates to the in vitro properties of antibodies from alternative cell lines.

    Get PDF
    We previously produced a recombinant version of the human anti-RhD antibody Fog-1 in the rat myeloma cell line, YB2/0. When human, autologous RhD-positive red blood cells (RBC) were sensitised with this IgG1 antibody and re-injected, they were cleared much more rapidly from the circulation than had been seen earlier with the original human-mouse heterohybridoma-produced Fog-1. Since the IgG have the same amino acid sequence, this disparity is likely to be due to alternative glycosylation that results from the rat and mouse cell lines. By comparing the in vitro properties of YB2/0-produced Fog-1 IgG1 and the same antibody produced in the mouse myeloma cell line NS0, we now have a unique opportunity to pinpoint the cause of the difference in ability to clear RBC in vivo. Using transfected cell lines that express single human FcγR, we showed that IgG1 made in YB2/0 and NS0 cell lines bound equally well to receptors of the FcγRI and FcγRII classes but that the YB2/0 antibody was superior in FcγRIII binding. When measuring complexed IgG binding, the difference was 45-fold for FcγRIIIa 158F, 20-fold for FcγRIIIa 158V and approximately 40-fold for FcγRIIIb. The dissimilarity was greater at 100-fold in monomeric IgG binding assays with FcγRIIIa. When used to sensitise RBC, the YB2/0 IgG1 generated 100-fold greater human NK cell antibody-dependent cell-mediated cytotoxicity and had a 103-fold advantage over the NS0 antibody in activating NK cells, as detected by CD54 levels. In assays of monocyte activation and macrophage adherence/phagocytosis, where FcγRI plays major roles, RBC sensitised with the two antibodies produced much more similar results. Thus, the alternative glycosylation profiles of the Fog-1 antibodies affect only FcγRIII binding and FcγRIII-mediated functions. Relating this to the in vivo studies confirms the importance of FcγRIII in RBC clearance.The work was supported by funding from the Department of Pathology, University of Cambridge through income that was derived from commercial exploitation of patented antibodies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final published version. It first appeared at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109463

    Enhanced shot noise in resonant tunnelling via interacting localised states

    Full text link
    In a variety of mesoscopic systems shot noise is seen to be suppressed in comparison with its Poisson value. In this work we observe a considerable enhancement of shot noise in the case of resonant tunnelling via localised states. We present a model of correlated transport through two localised states which provides both a qualitative and quantitative description of this effect.Comment: 4 pages, 4 figure

    Re-entrant resonant tunneling

    Full text link
    We study the effect of electron-electron interactions on the resonant-tunneling spectroscopy of the localized states in a barrier. Using a simple model of three localized states, we show that, due to the Coulomb interactions, a single state can give rise to two resonant peaks in the conductance as a function of gate voltage, G(Vg). We also demonstrate that an additional higher-order resonance with Vg-position in between these two peaks becomes possibile when interactions are taken into account. The corresponding resonant-tunneling process involves two-electron transitions. We have observed both these effects in GaAs transistor microstructures by studying the time evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an isolated impurity (modulator). The heights of the two stronger peaks exibit in-phase fluctuations. The phase of fluctuations of the smaller middle peak is opposite. The two stronger peaks have their origin in the same localized state, and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure

    Software Agents as Facilitators of Coherent Coalition Operations

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.Software agents can be viewed as semi-autonomous entities which help people cope with the complexities of working collaboratively in a distributed information environment. This paper describes the research that DERA is carrying out into Software Agents for use in Command Systems and the collaborative work with the 16 partners of an international Coalition Agents Experiment. Specifically, the paper aims to show that using software agent-based C2 frameworks is a useful way of dealing with the complexity of real-world problems such as supporting agile and robust Coalition operations and enabling interoperability between legacy or previously incompatible systems. In addition, Agent-enabled 'grids' can be used to rapidly integrate a wide variety of agents and infrastructures, with domain management services structuring agent relationships, limiting their behaviours and enforcing Coalition policies

    Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals

    Full text link
    We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures provide a powerful means of investigating tunneling between a two-dimensional electron gas and a single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi energy, in excellent agreement with theory of the Fermi-edge singularity at finite temperature. This theory also indicates that defect levels are the origin of the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
    • …
    corecore