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Abstract

We previously produced a recombinant version of the human anti-RhD antibody Fog-1 in the rat myeloma cell line, YB2/0.
When human, autologous RhD-positive red blood cells (RBC) were sensitised with this IgG1 antibody and re-injected, they
were cleared much more rapidly from the circulation than had been seen earlier with the original human-mouse
heterohybridoma-produced Fog-1. Since the IgG have the same amino acid sequence, this disparity is likely to be due to
alternative glycosylation that results from the rat and mouse cell lines. By comparing the in vitro properties of YB2/0-
produced Fog-1 IgG1 and the same antibody produced in the mouse myeloma cell line NS0, we now have a unique
opportunity to pinpoint the cause of the difference in ability to clear RBC in vivo. Using transfected cell lines that express
single human FccR, we showed that IgG1 made in YB2/0 and NS0 cell lines bound equally well to receptors of the FccRI and
FccRII classes but that the YB2/0 antibody was superior in FccRIII binding. When measuring complexed IgG binding, the
difference was 45-fold for FccRIIIa 158F, 20-fold for FccRIIIa 158V and approximately 40-fold for FccRIIIb. The dissimilarity
was greater at 100-fold in monomeric IgG binding assays with FccRIIIa. When used to sensitise RBC, the YB2/0 IgG1
generated 100-fold greater human NK cell antibody-dependent cell-mediated cytotoxicity and had a 103-fold advantage
over the NS0 antibody in activating NK cells, as detected by CD54 levels. In assays of monocyte activation and macrophage
adherence/phagocytosis, where FccRI plays major roles, RBC sensitised with the two antibodies produced much more
similar results. Thus, the alternative glycosylation profiles of the Fog-1 antibodies affect only FccRIII binding and FccRIII-
mediated functions. Relating this to the in vivo studies confirms the importance of FccRIII in RBC clearance.
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Introduction

For 40 years, human polyclonal anti-RhD antibodies have been

used successfully in the prophylactic treatment of haemolytic

disease of the foetus and newborn to prevent the immunisation of

RhD-negative women by RhD-positive foetal RBC. The precise

mechanisms by which the polyclonal anti-RhD IgG suppress

immunisation against the RhD antigen are not fully understood

but involve rapid, non-inflammatory, FccR-mediated sequestra-

tion of the RhD-positive cells [1,2]. There is evidence that

FccRIIIa plays the major role in this clearance of sensitised RBC.

Most notably, RBC clearance was slower following administration

of an anti-FccRIII monoclonal antibody to chimpanzees and to a

patient [3,4]. Due to the problems implicit in the use of antibodies

from hyperimmune plasma, there has been a drive to identify

effective monoclonal anti-RhD antibodies with which to replace

polyclonal anti-RhD. As a result, monoclonal anti-RhD antibodies

form perhaps the largest group of different antibodies against the

same antigen that have been tested in humans. It appears that the

most efficient antibodies for RBC clearance are those that give

good antibody-dependent cell-mediated cytotoxicity (ADCC) with

NK cells [5,6]. This does not necessarily imply that NK cells are

involved in RBC clearance but that this assay is a good measure of

ability to interact with FccRIIIa. Phagocytosis by splenic

macrophages is held to be the mechanism of IgG-sensitised

RBC destruction but to achieve this by engagement of the high

affinity IgG receptor, FccRI, would require displacement of serum

IgG, which occupies its binding site under physiological condi-

tions. Strong binding of RBC-bound antibody to the intermediate
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affinity FccRIIIa may allow rapid association of RBC and

macrophages. This could both activate the macrophages directly

and promote interactions via FccRI molecules upon dissociation of

non-specific IgG from their binding sites.

One of our interests lies in the development of mutated human

IgG constant regions with different combinations of properties that

can be tailored for therapeutic use. Combining these constant

regions with the variable regions of the human anti-RhD IgG1

antibody Fog-1 [7] allowed measurement of their activity in

various in vitro assays and offered the potential to study their effect

on the intravascular survival of RBC in humans. Accordingly,

aliquots of autologous RBC were labeled with different radionu-

clides and coated with either Fog-1 IgG1 antibody or a mutated

version with reduced effector function (Fog-1 G1Dnab) before

reinjection [8]. As anticipated, clearance of cells coated with Fog-1

G1Dnab from the circulation was significantly slower than the

clearance of wild-type IgG1-coated cells. IgG1-mediated clearance

was complete and irreversible, with accumulation in the spleen

and liver and the appearance of radiolabel in plasma. Notably, the

clearance mediated by our recombinant Fog-1 IgG1 was much

more rapid than seen in a previous study that used the original

Fog-1 antibody at comparable coating levels [9]. Monoclonal anti-

RhD IgG do range widely in their ability to mediate RBC

clearance and, whilst some of this variation results from the

properties of the different variable regions and the choice of IgG1

or IgG3 constant regions, the cell line used for expression of the

IgG appears to be crucial [5]. It is therefore relevant that the

original Fog-1 was obtained from human-mouse heterohybridoma

cells following fusion of Epstein-Barr virus-transformed B

lymphocytes with the mouse myeloma line X63-Ag8.653 [10]

whereas transfected YB2/0 rat myeloma cells were used for the

production of both recombinant Fog-1 G1 and G1Dnab. The cell

line influences the effector properties of an antibody sample by

being responsible for its glycosylation profile.

IgG heavy chain carbohydrate moieties are linked to N297 of

each chain, fill the space between the two CH2 domains and play

roles in the stability and interactions of the Fc (reviewed [11]).

Each oligosaccharide is of the complex biantennary type and

consists of a basic heptasaccharide structure that can be enlarged

by the presence of fucose on the primary N-acetylglucosamine

(GlcNAc) residue, galactose (6sialic acid) on one or both of the

terminal GlcNAc and a bisecting GlcNAc residue. Absence of

carbohydrate results in a decrease in binding to all classes of Fc

receptor whilst changing the oligosaccharide structure can modify

binding. Serial truncation of Fc carbohydrate structures results in

the movement of CH2 domains towards each other and

conformational changes in the FccR interface region that make

receptor binding less favourable [12].

Apart from the Fog-1 studies, the only clinical investigation of

anti-RhD antibodies that were produced from alternative cell lines

involved a BRAD-5 and BRAD-3 mixture [13]. In contrast to the

dissimilar RBC clearance rates of the two Fog-1 IgG1, comparable

rates were mediated by the BRAD antibodies from EBV-

immortalised human cell lines and CHO cells. We wished to

understand the difference in potency between the Fog-1 IgG1from

YB2/0 and the original Fog-1 from human-mouse heterohybri-

doma cells by comparing the properties of IgG carrying

glycosylation that is typical of the products of rat or mouse cell

lines. We chose to compare the YB2/0-produced Fog-1 IgG1 with

the same antibody produced in the mouse myeloma cell line NS0

since this is a line commonly used for therapeutic antibody

production.

Comparison has previously been made between the activities of

antibodies produced in YB2/0, NS0 and CHO cells [14]. When

produced in YB2/0 cells, the humanised IgG1 antibody

CAMPATH-1H was approximately 30-fold more efficient in

ADCC assays than the same antibody made in either NS0 or

CHO cells whilst the antibodies were equally active in monocyte

killing assays. Oligosaccharide analysis showed that YB2/0-

produced antibody contained less fucose (6–7% against 90% for

CHO) and more bisecting GlcNAc residues than IgG made in

CHO or NS0. These two properties are related since fucosylation

prevents enzymatic addition of bisecting GlcNAc. The NS0- and

CHO-derived antibodies contained carbohydrate of a similar

structure but the NS0 IgG1 was significantly underglycosylated.

Fractionation of the IgG showed that it was the lack of fucose,

rather than the presence of bisecting GlcNAc, that led to YB2/0-

produced IgG1 being more efficient at ADCC [15]. Furthermore,

when YB2/0 cells were caused to over-express FUT8 mRNA to

supplement their low levels a1,6-fucosyltransferase, this led to

IgG1 with 81% fucosylation and 100-fold lower ADCC.

Since most of the literature that examines the effects of cell-

specific glycosylation involves IgG produced in CHO cells, there

has been no systematic comparison of YB2/0- and NS0-produced

IgG. Although NS0 and CHO cell lines yield IgG with similar

distributions of glycan structures, the presence of aglycosyl IgG in

NS0 samples potentially reduces binding to all classes of FccR.

Here we evaluate the relative levels of binding of YB2/0- and

NS0-produced Fog-1 IgG1 to a series of transfected cell lines that

separately bear each type of human FccR. We also test the

antibodies’ performance in ADCC, NK cell and monocyte

activation and macrophage adherence and phagocytosis assays.

So that the impact of altering the glycosylation profile of the

antibody can be compared to the change in binding achieved

through amino acid mutation, in some assays we include the Fog-1

IgG1 mutant with reduced activity, Fog-1 G1Dnab, made in YB2/

0 or NS0 cells. As well as definitively assessing the relative levels of

interaction of YB2/0- and NS0-produced IgG1 with the different

FccR, this work reinforces what is known about the mechanism of

IgG-sensitised RBC clearance.

Materials and Methods

Antibody production and characterisation
The production of recombinant IgG1 and mutant G1Dab forms

of Fog-1 in YB2/0 rat myeloma cells [16] and their subsequent

characterisation has been described [17–19]. Fog-1 G1Dnab was

produced by removing the G1m(1,17) allotypic residues from

G1Dab, without effect on its properties [8]. Both wildtype and

mutant Fog-1 antibodies were similarly produced from NS0 mouse

myeloma cells [20]. The antibodies are denoted as Fog-1 G1 and

Fog-1 G1Dnab followed by (YB2/0) or (NS0). The relative

concentrations of the antibodies were confirmed by sandwich

ELISA, using goat anti-human IgG, Fc-specific antibodies and

HRPO-conjugated goat anti-human k light chains antibodies

(Sigma, Poole, UK).

Measurement of IgG binding to transfected cell lines
bearing human FccR

Cell lines transfected with appropriate cDNA expression vector

constructs to express single human FccR have been variously

obtained. For FccRI, the cell line was B2KA (S. Gorman and G.

Hale, unpublished) and CHO cells expressing FccRIIIb of

allotypes NA1 and NA2 [21] were provided by J. Bux. CHO

cell lines expressing FccRIIIa of allotypes 158F and 158V as GPI-

anchored receptors or the various FccRII molecules as trans-

membrane proteins with native cytoplasmic domains have been

constructed [22,23]. Continued and uniform expression of the
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appropriate FccR was confirmed in each antibody binding assay

by staining a sample of the cells for the receptor. Cells were

incubated with CD64 (clone 10.1), CD32 (AT10) or CD16

(LNK16) monoclonal antibody (AbD Serotec, Kidlington, UK)

and its binding detected with FITC-conjugated goat anti-mouse

IgG antibodies (Sigma).

Binding of monomeric Fog-1 IgG to B2KA cells expressing

FccRI was measured as previously described using Fog-1 IgG2

antibody, produced in YB2/0, as a negative control [17].

Monomeric binding of IgG to FccRIIIa was detected by the same

protocol but using biotinylated goat F(ab9)2 anti-human k
(Rockland) followed by ExtrAvidin FITC (Sigma). Complexed

Fog-1 antibody binding to FccRII and III receptors was measured

by pre-incubating the test antibodies with equimolar amounts of

goat F(ab9)2 fragments that recognise human k chain (Rockland)

[19]. Human IgA1, k purified myeloma protein (The Binding Site,

Birmingham, UK) was used as a negative control test antibody.

Complexes were detected using FITC-conjugated F(ab9)2 frag-

ments of rabbit anti-goat IgG, F(ab9)2-specific antibodies (Jackson

ImmunoResearch, Newmarket, UK) or FITC-conjugated donkey

anti-goat IgG antibodies (Serotec). The mean fluorescence of cells

from each sample was determined using a CyAn ADP flow

cytometer and Summit v4.3 software (DakoCytomation, Ely, UK)

or on a FACScan flow cytometer using LysisII software (Becton

Dickinson, Oxford, UK).

Fold-differences in IgG binding were calculated as follows:

Firstly, a curve was fitted to a subset of the mean fluorescence data

of G1 (YB2/0), the higher-binding IgG. This was a logarithmic

curve for the complexed IgG binding or a sigmoidal curve for the

monomeric IgG binding. Using the mean fluorescence values of

each of the three highest concentrations of the other IgG, the ratio

of concentrations of the two IgG giving these mean fluorescence

values was calculated. This was carried out for three or more

independent experiments so that the fold-difference in binding

could be expressed as the mean6sd of at least nine values.

Rosetting assays
O, RhD-positive RBC, which were shown to carry 9000 RhD

sites/cell by SOL-ELISA [8], were incubated with dilutions of

Fog-1 antibodies in V-bottom plates for 1 hour at room

temperature. The cells were pelleted, washed three times in

150 ml/well PBS and resuspended in 100 ml RPMI (approximately

1% suspension). CHO+FccRIIIa 158F or 158V cells were

harvested using Cell Dissociation Buffer (Invitrogen), washed,

resuspended at 46106 cells/ml and 100 ml samples added to the

sensitised RBC. The cells were pelleted together at 2006 g for

2 min and incubated on ice for 1 h. 10 ml samples were

transferred to slides with coverslips and representative images

captured at 406magnification.

Assays of functional responses to Fog-1
antibody-sensitised RBC

ADCC, macrophage adhesion and phagocytosis and monocyte

activation assays were carried out using human cells as described

previously [23]. NK cell activation was assessed using a method

adapted from [24]. Peripheral blood mononuclear cells (PBMC)

were prepared from FCGR3A- and FCGR2C-genotyped donors

by adding 6 ml samples of EDTA-anti-coagulated blood to 45 ml

samples of RBC lysis buffer (150 mM NH4Cl, 10 mM KHCO3,

1 mM EDTA) and incubating at room temperature for 15 min.

White cells were collected by centrifugation, washed in RBC lysis

buffer and resuspended in complete RPMI (RPMI containing

10% heat-inactivated FBS, 2 mM L-glutamine, 0.5 mg/ml am-

photericin B, 100 U/ml penicillin, 0.1 mg/ml streptomycin).

Using the same donor as for the rosetting assays above, RBC

were prepared by pelleting cells from 100 ml blood, washing twice

in 1 ml RPMI and resuspending in complete RPMI. Samples of

test antibody, 105 PBMC, 46105 RBC were added to round-

bottomed wells in 100 ml complete RPMI in triplicate and

incubated at 37C in a humidified atmosphere of 5% CO2 in air

for 20 h. Control wells omitted test antibody or used 10 mg/ml

IgG1 of irrelevant specificity. The surface expression of CD54 on

NK cells (identified as CD32CD56+) was determined by flow

cytometry: The cells in each well were washed three times with

FACS wash buffer (PBS containing 0.1% BSA, 0.1% NaN3) then

incubated in 100 ml FACS wash buffer containing PerCP/Cy5.5-

conjugated CD3 (clone UCHT1), PE-conjugated CD56 (clone

HCD56) and APC-conjugated CD54 (clone HA58, all from

BioLegend, London, UK) for 45 minutes on ice. The cells were

washed twice and fixed in 1% formaldehyde. Samples were

analysed using a CyAn ADP flow cytometer and Summit v4.3

software with appropriate compensation settings. Mean APC

fluorescence intensity was calculated for at least 2000

CD32CD56+ cells from each well and plotted as mean6SD of

the triplicate samples at each test antibody concentration. Samples

containing control IgG1 antibody or RhD negative RBC showed

no increase in APC fluorescence relative to samples containing no

test antibody.

FCGR3A and FCGR2C genotyping
Typing for the FccRIIIa 158F/V polymorphism was carried

out on genomic DNA that had been purified using the QIAamp

DNA Blood Mini Kit (Qiagen, Manchester, UK). A 235 bp

section of DNA, which comprised parts of the 5th exon and

following intron, was amplified using oligonucleotides (59 CAT-

ATTTACAGAATGGCAAAGG 39, 59 CAACTCAACTTCC-

CAGTGTGAT 39) that each mismatch the closely homologous

FCGR3B gene at their 39 nucleotide. The PCR products were

directly sequenced using the second primer. Lack of FCGR3B

contamination was confirmed by examining the electropherogram

at two positions within the amplified DNA where the FCGR3A

and FCGR3B sequences differ and the presence of the TTT (F)

codon, GTT (V) codon or a mixture was determined.

High homology between the ectodomains of FccRIIb and

FccRIIc means that FccRIIc typing requires amplification of

cDNA to enable use of a FccRIIb/c-specific primer at the 59 end

and a FccRIIa/c-specific primer at the 39 end. Whole blood was

diluted 10-fold with RBC lysis buffer and the white cells collected

by centrifugation. These were lysed and stored in RNASafer

(Omega bio-tek, Lutterworth,UK) before RNA was prepared

using Tripure reagent (Roche, Burgess Hill, UK). First strand

cDNA was synthesised from a FccRIIa/c-specific primer (59

AGCAAGTCTAGAGTATGACCACATGGCATAACGTTAC-

TCTTTAG 39) and was amplified by PCR using the same

oligonucleotide in conjunction with a FccRIIb/c-specific primer

(59 GACTGCTGTGCTCTGGGCGCCAGCTCGCTCCA 39).

Product was subjected to a second round of PCR using primers F

(59 AGGGAGTGATGGGAATCCTGTCATT 39) and R (59

CATAGTCATTGTTGGTTTCTTCAGG 39). The nested PCR

product was directly sequenced from primer F2 (59 CAT-

ATGCTTCTGTGGACAGCT 39). For this cDNA segment, the

FccRIIc ORF and STP alleles differ at 3 positions in addition to

the CAG (Q)/TAG (STP) codon corresponding to amino acid

residue 13 [25].

A Functional Comparison of Human IgG1 Anti-RhD from Two Cell Lines
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Results

Comparison of binding of YB2/0 and NS0-generated
antibodies to human FccR

We used transfected cell lines, each expressing a single human

FccR, to pinpoint the effects on FccR binding of changing the IgG

production cell line. For FccRIIa, FccRIIIa and FccRIIIb,

functional polymorphisms are known [26] and testing was

performed for two allotypes of each receptor. The IgG were

titrated to obtain receptor-binding curves from which any

differences in strengths of binding could be calculated. Such

comparisons are traditionally made by relating the concentrations

of each antibody required to give half-maximal binding but, for

the IgG concentrations used here, either maximal binding was not

achieved by the higher-binding IgG or the lower-binding IgG did

not reach the half-maximal binding level. Therefore, comparison

was made between the binding signals detected for the highest

three concentrations of the lower-binding IgG and the binding

curve of the higher-binding IgG as described in Materials and

Methods.

Given the previous reports of FccRIIIa importance in RBC

clearance, we began by examining binding to this receptor. The

binding of pre-complexed Fog-1 G1 (YB2/0) antibody to cells

expressing FccRIIIa of allotype 158F was 45-fold higher than that

of pre-complexed G1 (NS0) (45617 fold over 5 experiments;

Figure 1A). For the higher affinity allotype of the receptor,

FccRIIIa 158V, G1 (YB2/0) complexes bound 20-fold better than

complexes of the NS0-produced antibody (2065 fold over 3

experiments; Figure 1B). This assay of complexed IgG binding to

FccRIIIa is sufficiently sensitive for binding of the Fog-1 IgG1

mutant with reduced effector function (Fog-1 G1Dnab) to be

detected at the highest IgG concentrations used. Binding of

G1Dnab (YB2/0) to the FccRIIIa 158F and 158V molecules is 51-

fold and 63-fold lower, respectively, than that of G1 (YB2/0)

(158F: 51612 fold over 3 experiments; 158V: 63618 fold over

only 2 experiments). Switching to NS0 for G1Dnab antibody

production only gives a small additional decrease in binding.

FccRIIIa is classed as a medium affinity Fc receptor and its

interactions with monomeric antibody samples can also be

measured. This was carried out to ensure that superiority of the

YB2/0-derived antibody was not an artefact of the complexed

antibody assay system. By this method, G1 (YB2/0) bound 102-

fold and 97-fold more efficiently than G1 (NSO) to the 158F and

158V allotypes of the receptor respectively (158F: 102625 fold

over 3 experiments; 158V: 97633 fold over 3 experiments;

Figure 1C and D). The higher affinity of the 158V allotype of the

receptor is clearly evident here since the binding curves for this

allotype are displaced towards lower concentrations compared to

the curves for the F allotype.

As an additional binding measurement, Fog-1 G1-sensitised

RBC were tested for their ability to rosette the receptor-bearing

cells. Figure 1, panels E - H show photographs from a

representative experiment carried out with the FccRIIIa 158V

cell line. IgG with Fog-1 variable regions are known to give 100%

saturation of RBC RhD sites (equivalent to 9000 IgG/RBC in

these experiments) at a coating concentration of approximately

20 mg/ml and 50% saturation at 0.4 mg/ml (data not shown). A

reduction in G1 (NSO) coating concentration from 100 mg/ml to

11 mg/ml reduced rosette formation even though this does not

represent a large change in terms of IgG/RBC. Tight rosettes,

similar to those seen at100 mg/ml G1 (NSO), were formed by

RBC coated with G1 (YB2/0) at 1.1 mg/ml or approximately

6000 IgG/RBC. The difference between the G1 (YB2/0) and G1

(NSO) coating concentrations that gave equivalent levels of

rosetting was greater in the case of the FccRIIIa 158F cell line

(data not shown).

We went on to compare the binding of monomeric YB2/0- and

NS0-produced immunoglobulin to the high affinity FccRI and

complexed antibody binding to the remaining human FccR,

which are of low affinity. Very similar binding of the two IgG1

antibodies was observed for FccRI, FccRIIa (of allotypes 131R

and 131H) and FccRIIb (Figure 2, panels A–D). In contrast, for

FccRIIIb of NA1 and NA2 allotypes (Figure 2E and F), there were

large differences in binding with the YB2/0-produced IgG1 being

39-fold and 38-fold better respectively (NA1: 39612 fold over 3

experiments; NA2: 38610 fold over 3 experiments). These

differences are comparable to those measured for the FccRIIIa

molecules.

Measurement of functional cellular responses to
Fog-1-sensitised RBC

Measurement of NK cell-mediated ADCC of Fog-1 IgG-

sensitised RBC showed G1 (YB2/0) to cause lysis about 100-fold

more efficiently than G1 (NS0) at sub-saturating concentrations

(Figure 3A). However, the lysis mediated by G1 (NS0) was still

higher than the background levels of lysis that were typical of

G1Dnab (YB2/0).

We also examined the interaction with NK cells by using flow

cytometry to measure the levels of the NK cell activation marker

CD54 after overnight co-culture of PBMC and RBC in the

presence of Fog-1 antibody. Results are shown for three donors of

PBMC with different FCGR3A/FCGR2C genotypes (Figure 3,

panels B–D). G1 (YB2/0) concentrations $1 ng/ml (Figure 3B),

$10 ng/ml (Figure 3C) or $100 ng/ml (Figure 3D) produced

CD54 levels that were significantly higher than in samples with no

test antibody (p,0.05, Student’s t-test). Even at 10 mg/ml, G1

(NS0) caused little increase in CD54 level with the fluorescence

signals being similar to those seen in response to G1Dnab or non-

specific IgG1 control and in samples without test antibody. Since

10 mg/ml G1 (NS0) generated a CD54 level that was similar to or

lower than 10 ng/ml G1 (YB2/0), the two IgG appear to be at

least 1000-fold different in their abilities to activate NK cells.

The activities of G1 (YB2/0) and G1 (NS0) were also compared

using macrophages and monocytes as effector cells. Both of these

cell types express FccRI in addition to lower affinity receptors.

Human macrophages were obtained from adherent mononuclear

cells that had been cultured with M-CSF and differentiated with

IFNc and LPS and were CD64+, CD32+ and CD16+ by flow

cytometry (data not shown). The proportions of macrophages

found to be interacting with Fog-1 antibody-saturated RBC

following 1 h incubations were determined. For three different

macrophage donors, there was no significant difference between

the G1 (YB2/0) and G1 (NS0) samples in terms of the numbers of

RBC interacting (p = 0.4, paired Student’s t-test) or the proportion

of these that had been phagocytosed (p = 0.3) (Figure 4A).

Presence of the G1 antibodies resulted in higher macrophage/

RBC interaction rates than G1Dnab and there were no instances

of phagocytosis with the latter antibody.

Chemiluminescence assays of monocyte activation in response

to Fog-1 antibody-sensitised RBC showed Fog-1 G1 (YB2/0) to be

approximately 3-fold more efficient at activating monocytes than

G1 (NS0) (Figure 4B). G1Dnab did not cause activation.

Discussion

Our comparison of the activities of IgG1 antibodies produced in

YB2/0 and NS0 cell lines has shown heightened performance of

the YB2/0 antibody in FccRIII binding and FccRIII-mediated
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functions. With the amino acid sequence of the two IgG1

antibodies being identical, the difference in activity must be due

to variations in glycosylation. Although we did not analyse the

glycosylation profiles of the IgG tested here, previous studies have

shown that NSO-produced antibody was underglycosylated

compared to IgG produced in YB2/0, their glycan moieties

contain more fucose and less bisecting GlcNAc residues [14] and

that lower levels of fucose lead to greater efficiency in ADCC [15].

We were able to pinpoint through which receptors the

differences in activity were generated by comparing the binding

of YB2/0- and NS0-produced Fog-1 G1 to each type of human

FccR. The assays measured monomeric IgG binding to the high

affinity FccRI and medium affinity FccRIIIa and complexed IgG

binding to FccRII and FccRIII molecules. For each of the

receptors FccRI, FccRIIa 131R and131H and FccRIIb, G1

(YB2/0) and G1 (NS0) showed very similar binding to each other.

In contrast, large inequalities in binding ability between G1 (YB2/

0) and G1 (NS0) were observed in complexed IgG binding to both

FccRIIIa and FccRIIIb and in monomeric IgG binding to

FccRIIIa. In addition, Fog-1 G1 (YB2/0)-sensitised RBC readily

formed rosettes with the FccRIIIa transfectants at lower IgG

coating concentrations than Fog-1 G1 (NS0)-sensitised RBC.

The superior FccRIIIa binding of G1 (YB2/0) over G1 (NS0)

translates into greater NK cell-mediated ADCC activity as might

be expected since it is the only Fc receptor carried by NK cells in

the majority of people. In some individuals, NK cells also express

FccRIIc, a low affinity, activating receptor with identical

extracellular domains to FccRIIb. This is due to a polymorphism,

corresponding to amino acid 13 of the mature protein, where

functional FccRIIc depends on the presence of a Q codon, rather

than stop codon [27]. In addition to the ADCC assays, we

compared the abilities of the antibodies to cause NK cell activation

when incubated with PBMC and RhD-positive RBC. Fog-1 G1

(YB2/0) was much more efficient in increasing levels of the

activation marker CD54 than the NS0 antibody. Although our

study was limited to one individual of each FCGR3A 158

Figure 1. Binding interactions of YB2/0- and NS0-produced Fog-1 G1 and G1Dnab antibodies with human FccRIIIa. A–D CHO cells
expressing FccRIIIa of allotypes 158F (A, C) and 158V (B, D) were incubated with pre-complexed (A, B) or monomeric (C, D) Fog-1 IgG and binding
detected with fluorescent reagents and flow cytometry. Graphs show mean fluorescence of $12 000 cells at each antibody concentration and are
typical of the results obtained in at least three experiments with each receptor. E–H Examples of the rosetting of FccRIIIa 158V-expressing cells by
RBC sensitised with Fog-1 G1 (YB2/0) at 10 mg/ml (E) and 1.1 mg/ml (F) or with Fog-1 G1 (NS0) at 100 mg/ml (G) and 11 mg/ml (H). Images are typical of
eight independent experiments.
doi:10.1371/journal.pone.0109463.g001
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genotype, with only the VV donor being FccRIIc-positive, we did

see a trend in the lowest G1 (YB2/0) concentration at which

significant activation was detected: VV,FV,FF. This is consis-

tent with the activation being dependent on FccRIIIa avidity for

IgG.

In contrast to the large differences in activity seen in ADCC and

NK cell activation experiments, G1 (YB2/0)- and G1 (NS0)-

coated RBC interacted with macrophages to a similar extent and

there was only a three-fold variation in ability to activate

monocytes. In these two assays, the high affinity FccRI, which

binds the two antibodies equally efficiently, is present and able to

play a dominant role in the absence of high levels of competing

non-specific IgG. This is unlikely to be the case in vivo where the

concentrations of IgG mean that FccRI molecules will be occupied

by antibody and macrophage FccRIIIa becomes more important

for RBC removal.

The difference in FccRIIIa binding of IgG1 from YB2/0 and

NS0 cell lines is similar to that between YB2/0- and CHO-derived

IgG1 with the former being approximately 100-fold better at

binding to soluble FccRIIIa 158 F or V by ELISA [28]. A variant

CHO line, Lec13, produces IgG molecules with 10% fucosylation

and dimers of these IgG show up to 50-fold improved binding over

normal CHO-produced IgG to FccRIIIa a-chain in ELISAs [29].

Lower fucose gave less improvement when measuring the binding

of trimers or mutated IgG with an intrinsically higher affinity for

FccRIIIa. This concurs with the results of our three measurements

of FccRIIIa binding where the greatest difference was observed

when monomeric IgG was tested. These groups [28,29] showed

essentially identical binding of their glycosylation variants to

FccRI and FccRIIa, allotype 131H although the low fucose

antibodies gave slightly higher signals with FccRIIa, allotype 131R

and FccRIIb. The difference in ADCC efficacy between G1

(YB2/0) and G1 (NS0) is also similar to that observed between

YB2/0- and CHO-derived IgG1 in several studies. In ADCC

assays using 20 different donors of PBMC, a YB2/0-produced

version of the CD20 therapeutic antibody, rituximab, was 10–100

fold better than the original CHO-produced antibody [28]. YB2/

0–produced IgG gave equivalent levels of ADCC to CHO-made

antibody at lower antigen densities [30], at lower antibody

concentrations or with lower numbers of effector cells [31].

The effect of switching from CHO- to YB2/0-produced IgG1

on the interaction with FccRIIIa has also been analysed by surface

plasmon resonance and isothermal titration calorimetry [32]. The

enhancement of affinity arises mainly from an increased associ-

ation rate that is a consequence of greater favourable enthalpy and

implies additional non-covalent interactions. In line with the

approximate 100-fold difference we saw between monomeric

YB2/0- and NS0-produced IgG1binding to cell-surface FccRIIIa,

low-fucose IgG1was shown to have a 50-fold greater affinity than

high-fucose IgG1 for soluble FccRIIIa 158V by surface plasmon

resonance [33]. Mutation of the receptor residue N162 reduced

the affinity of low-fucose IgG1 by 13-fold whilst increasing that of

high-fucose IgG1 by 3-fold. The authors infer that a high affinity

interaction requires glycosylation at N162 of the receptor but that

this carbohydrate can only have productive contacts with

nonfucosylated IgG. The fucose residue, which protrudes from

the carbohydrate core, may prevent close approach of the

molecules. Although the crystal structure of an IgG1-Fc fragment

in complex with FccRIIIb was solved using aglycosyl receptor

[34], it does indicate that a carbohydrate moiety attached to

receptor residue N162 would be orientated towards the carbohy-

drate of the Fc. Only FccRIIIa and FccRIIIb of human FccR

Figure 2. Binding of YB2/0- and NS0-produced Fog-1 G1 antibodies to human FccR. A Binding of monomeric IgG was measured for FccRI
using the B2KA cell line and flow cytometry. Fog-1 IgG2 antibody, produced in the YB2/0 cell line, was used as the non-binding control antibody for
this receptor. B–F Binding of pre-complexed IgG was measured using CHO cell lines expressing the low affinity receptors which were FccRIIa,
allotypes 131R (B) and 131H (C), FccRIIb (D) and FccRIIIb, allotypes NA1 (E) and NA2 (F). The level of background binding is given by the negative
control antibody, IgA,k. Graphs show mean fluorescence of $12 000 cells at each antibody concentration and are typical of the results obtained in at
least three experiments with each receptor.
doi:10.1371/journal.pone.0109463.g002
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have a glycosylation site at position162, which accounts for the

selectivity of the fucose effect.

Features of Fog-1 G1 (YB2/0)-mediated RBC clearance in vivo,

namely the accumulation of RBC in the liver and the presence of

radioactivity in the plasma [8], have raised concern about the use

of YB2/0-produced IgG in the prevention of alloimmunisation

[5]. The hepatic uptake could be indicative of YB2/0-derived

antibodies having pro-inflammatory interactions via their carbo-

hydrate residues with molecules of the innate immune system.

Accumulation in the liver, in addition to the spleen, occurred in

two subjects with.11000 IgG1 molecules/RBC (or more than

40 mg IgG1/ml packed cells) but not in a subject with

6800 molecules/cell. This accumulation must be FccR-dependent

since it did not occur in two subjects where RBC were coated with

Fog-1 G1Dnab at.15000 molecules/cell. Few RBC clearance

studies have included imaging but an investigation reported

hepatic uptake at high coating levels when RBC were sensitised

with different amounts of polyclonal anti-Rh antibody from

human serum [35]. Thus accumulation in the liver may be a

consequence of FccR binding of IgG that is presented at a high

density on the RBC surface rather than interactions specifically

with the glycan structure of the YB2/0-produced IgG. Most RBC

survival studies use low coating levels as they are designed to

discover if relatively low, prophylactic doses of the anti-RhD IgG

would give sufficient RBC clearance. This might also explain the

unusualness of detecting radioactivity in the plasma, which has

been suggested to imply that some RBC were destroyed by a

potentially pro-inflammatory extracellular cytotoxic mechanism

rather than by phagocytosis [5]. The fate of radioisotopes

following phagocytosis is unknown and cannot be assumed to be

the same as for other products of cell destruction such as

haemoglobin. The high rates of RBC destruction in our study may

Figure 3. Functional responses of NK cells to RBC sensitised with Fog-1 antibodies. A The specific lysis of sensitised RBC by NK-cell
mediated ADCC is presented as mean6SD of triplicate samples. This experiment used effector cells pooled from 6 donors but similar results were
obtained in four experiments with individual donors of PBMCs. B–D The activation of NK cells in response to sensitised RBC as visualised by the level
of CD54 on the surface of CD32, CD56+ lymphocytes. Each graph shows the mean6SD of triplicate samples for each data point. Donors of PBMC
were of the following genotypes: FccRIIIa 158V/V, FccRIIc 13Q/13Q (B), FccRIIIa 158F/V, FccRIIc 13STP/13STP (C) and FccRIIIa 158F/F, FccRIIc 13STP/
13STP (D). CD54 signals for samples with no test antibody were 14.260.1 (B), 17.062.5 (C) and 13.061.1 (D). CD54 signals for samples incubated with
irrelevant IgG1 were 13.360.4 (B), 18.764.1 (C) and 12.160.9 (D).
doi:10.1371/journal.pone.0109463.g003
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account for the levels of radiolabel in the plasma. These peaked at

4–6% injected dose 100 min post-injection, by which time more

than 95% of the injected doses had disappeared from the cell

fractions [8]. Mollison et al. [35] saw comparable levels of plasma

radioactivity where there were rapid rates of destruction but most

studies have not reported plasma radioactivities. In addition to

Fog-1 IgG1, two other YB2/0-produced anti-RhD antibodies

have been tested in humans. R297 was found to be at least as

effective as commercially-available polyclonal anti-RhD in clear-

ing RBC [36]. Its derivative, R593 (roledumab), is undergoing

clinical trials [37] and has been shown to be well tolerated and

have a similar pharmacokinetic profile to human polyclonal anti-

RhD [38].

Superior ADCC activity, as afforded by YB2/0 production, can

be achieved by alternative methods of controlling the level of

antibody fucosylation (reviewed [39]). Ideally, all carbohydrate

moieties within the therapeutic antibody sample should be without

fucose since fucosylated molecules in mixtures can complete for

antigenic sites on target cells and batch-to-batch variation in

carbohydrate composition is a regulatory issue. A FUT82/2 CHO

line that produces completely non-fucosylated antibodies but

retains the growth characteristics of parent is attractive to the

biopharmaceutical industry [40]. In ADCC, FUT82/2 CHO-

produced chimeric anti-CD20 IgG1 was 100-fold more efficient

than original rituximab and 2–3 fold better than YB2/0-produced

antibody and enhancement was also seen for the other IgG

subclasses [41]. As well as being an effective method of improving

activity, removal of fucose should not result in immunogenicity

since 10–20% of normal human IgG lacks fucose [42]. Clinical

trials have shown that non-fucosylated antibodies are tolerated and

can give clinical effects at low doses [43,44].

This work has capitalised on a unique opportunity to compare

the effects of alternative glycosylation profiles on the in vivo and in
vitro properties of IgG molecules with the same amino acid

sequence. Our comparison of YB2/0- and NS0-produced IgG1

antibodies has revealed that differences in Fc receptor binding are

confined to FccRIII and amount to 100-fold higher binding of

YB2/0-produced IgG1 in the case of monomeric IgG binding to

FccRIIIa. The previously-reported underglycosylation of IgG

from NS0 cells [14] would be expected to reduce binding to all

FccR but our results showed very similar binding to receptors of

the FccRI and FccRII classes. The greater ability of Fog-1 IgG1

from YB2/0 cells, compared to the original Fog-1 from human-

mouse heterohybridoma cells, to clear RBC in vivo therefore

results from its improved FccRIII binding. These pieces of

evidence confirm the importance of FccRIII in RBC clearance.

Acknowledgments

We thank Professor Jürgen Bux for providing the FccRIIIb–bearing cell

lines. We greatly appreciate the advice given by Dr James Robinson and

Professor Ann Morgan regarding FCGR2C genotyping and Nishita

Nigam’s assistance with genotyping.

Author Contributions

Conceived and designed the experiments: KLA LMW MRC. Performed

the experiments: KLA CSS NCYI CJE CMK AMW. Analyzed the data:

KLA CSS NCYI CJE CMK AMW. Contributed reagents/materials/

analysis tools: KLA CSS. Wrote the paper: KLA MRC.

References

1. Kumpel BM (2008) Lessons learnt from many years of experience using anti-D

in humans for prevention of RhD immunization and haemolytic disease of the

fetus and newborn. Clin Exp Immunol. 154: 1–5.

2. Brinc D, Lazarus AH (2009) Mechanisms of anti-D action in the prevention of

hemolytic disease of the fetus and newborn. Hematology Am Soc Hematol Educ

Program. 1:185–191.

3. Clarkson SB, Kimberly RP, Valinsky JE, Witmer MD, Bussel JB, et al. (1986)

Blockade of clearance of immune complexes by an anti-Fcc receptor monoclonal

antibody. J Exp Med 164: 474–489.

4. Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, et al. (1986)

Treatment of refractory immune thrombocytopenic purpura with an anti-Fcc-

receptor antibody. N Engl J Med 314: 1236–1239.

Figure 4. Interactions of Fog-1 IgG-sensitised RBC with monocytes and macrophages. A The numbers of adherent (ext) and phagocytosed
(int) RBC per macrophage were determined for RBC sensitised with saturating concentrations of Fog-1 IgG. Results are shown for macrophages from
three different donors. The numbers of unsensitised RBC associating with macrophages were typically 15- to 20-fold lower than the numbers of Fog-1
G1 (YB2/0)-sensitised RBC. B The mean chemiluminescent response of monocytes to sensitised RBC is plotted with the error bars indicating the range
of the duplicate samples.
doi:10.1371/journal.pone.0109463.g004

A Functional Comparison of Human IgG1 Anti-RhD from Two Cell Lines

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109463



5. Kumpel BM (2007) Efficacy of RhD monoclonal antibodies in clinical trials as

replacement therapy for prophylactic anti-D immunoglobulin: more questions
than answers. Vox Sang 93: 99–111.
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