9 research outputs found

    Probing the growth of supermassive black holes at z>6 with LOFAR

    Get PDF
    HII regions surrounding supermassive black holes (BHs) in an otherwise still neutral intergalactic medium (IGM) are likely to be the most easily detectable sources by future 21cm experiments like LOFAR. We have made predictions for the size distribution of such HII regions for several physically motivated models for BH growth at high redshift and compared this to the expected LOFAR sensitivity to these sources. The number of potentially detectable HII regions does not only depend on the ionisation state of the intergalactic medium and the decoupling of the spin temperature of the neutral hydrogen from the cosmic microwave background (CMB) temperature, but is also strongly sensitive to the rate of growth of BHs at high redshift. If the supermassive BHs at redshift 6 were built up via continuous Eddington-limited accretion from low mass seed BHs at high redshift, then LOFAR is not expected to detect isolated QSO HII regions at redshifts much larger than 6, and only if the IGM is still significantly neutral. If the high-redshift growth of BHs starts with massive seed BHs and is driven by short-lived accretion events following the merging of BH hosting galaxies then the detection of HII regions surrounding supermassive BHs may extend to redshifts as large as 8-9 but is still very sensitive to the redshift to which the IGM remains significantly neutral. The most optimistic predictions are for a model where the supermassive BHs at z>6 have grown slowly. HII regions around supermassive BHs may then be detected to significantly larger redshifts.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Realistic Event Rates for Detection of Supermassive Black Hole Coalescence by LISA

    Full text link
    The gravitational waves generated during supermassive black hole (SMBH) coalescence are prime candidates for detection by the satellite LISA. We use the extended Press-Schechter formalism combined with empirically motivated estimates for the SMBH--dark matter halo mass relation and SMBH occupation fraction to estimate the maximum coalescence rate for major SMBH mergers. Assuming efficient binary coalescence, and guided by the lowest nuclear black hole mass inferred in local galactic bulges and nearby low-luminosity active galactic nuclei (10^5 Msun) we predict approximately 15 detections per year at a signal to noise greater than five, in each of the inspiral and ringdown phases. Rare coalescences between SMBHs having masses in excess of 10^7 Msun will be more readily detected via gravitational waves from the ringdown phase.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Detecting quasars at very high redshift with next generation X-ray telescopes

    Full text link
    The next generation of X-ray telescopes have the potential to detect faint quasars at very high redshift and probe the early growth of massive black holes (BHs). We present modelling of the evolution of the optical and X-ray AGN luminosity function at 2 < z < 6 based on a CDM merger-driven model for the triggering of nuclear activity combined with a variety of fading laws. We extrapolate the merger-driven models to z > 6 for a range of BH growth scenarios. We predict significant numbers of sources at z ~ 6 with fluxes just an order of magnitude below the current detection limits and thus detectable with XEUS and Constellation-X, relatively independently of the fading law chosen. The predicted number of sources at even higher redshift depends sensitively on the early growth history of BHs. For passive evolution models in which BHs grow constantly at their Eddington limit, detectable BHs may be rare beyond z ~ 10 even with Generation-X. However, in the more probable scenario that BH growth at z > 6 can be described by passive evolution with a small duty cycle, or by our merger driven accretion model, then we predict that XEUS and Generation-X will detect significant numbers of black holes out to z ~ 10 and perhaps beyond.Comment: 18 pages, 11 Figures. Version accepted to MNRAS; extra data plotted, XEUS and Con-X sensitivities corrected and predictions amended accordingl

    Measurement of the baryonic acoustic oscillation scale in 21 cm intensity fluctuations during the reionisation era

    Full text link
    It has recently been suggested that the power spectrum of redshifted 21cm fluctuations could be used to measure the scale of baryonic acoustic oscillations (BAOs) during the reionisation era. The resulting measurements are potentially as precise as those offered by the next generation of galaxy redshift surveys at lower redshift. However unlike galaxy redshift surveys, which in the linear regime are subject to a scale independent galaxy bias, the growth of ionised regions during reionisation is thought to introduce a strongly scale dependent relationship between the 21cm and mass power spectra. We use a semi-numerical model for reionisation to assess the impact of ionised regions on the precision and accuracy with which the BAO scale could be measured using redshifted 21cm observations. For a model in which reionisation is completed at z~6, we find that the constraints on the BAO scale are not systematically biased at z > 6.5. In this scenario, and assuming the sensitivity attainable with a low-frequency array comprising 10 times the collecting area of the Murchison Widefield Array, the BAO scale could be measured to within 1.5 per cent in the range 6.5 < z < 7.5.Comment: 10 pages, 4 figures. Version accepted for publication in MNRAS; analysis discusion and conclusions now focus on the spherically averaged BAO signa

    Realistic Event Rates for Detection of Supermassive Black

    No full text
    There is evidence for the existence of supermassive black holes (SMBHs) over a range of epochs; SMBHs with masses 10 5 − 10 9 M ⊙ are ubiquitous in local galactic bulges (e.g
    corecore