35 research outputs found
Molecular characterization and exclusion of porcine GUSB as a candidate gene for congenital hernia inguinalis/scrotalis
BACKGROUND: Inguinal hernias are usually caused by a congenital defect, which occurs as a weakness of the inguinal canal. Porcine ÎČ-glucuronidase gene (GUSB) was chosen as functional candidate gene because of its involvement in degradation of hyaluronan within gubernacular tissue during descent of testes. Since a genome-wide linkage analysis approach has shown evidence that two regions on porcine chromosome 3 (SSC 3) are involved in the inheritance of hernia inguinalis/scrotalis in German pig breeds, GUSB also attained status as a positional candidate gene by its localization within a hernia-associated chromosomal region. RESULTS: A contig spanning 17,157 bp, which contains the entire GUSB, was assembled. Comparative sequence analyses were conducted for the GUSB gene locus. Single nucleotide polymorphisms (SNPs) located within the coding region of GUSB were genotyped in 512 animals. Results of transmission disequilibrium test (TDT) for two out of a total of five detected SNPs gave no significant association with the outcome of hernia in pigs. CONCLUSION: On the basis of our studies we are able to exclude the two analyzed SNPs within the porcine GUSB gene as causative for the transmission of inguinal hernia
Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones
Background: In the last few years, microsatellites have become the most popular molecular marker system and have intensively been applied in genome mapping, biodiversity and phylogeny studies of livestock. Compared to single nucleotide polymorphism (SNP) as another popular marker system, microsatellites reveal obvious advantages. They are multi-allelic, possibly more polymorphic and cheaper to genotype. Calculations showed that a multi-allelic marker system always has more power to detect Linkage Disequilibrium (LD) than does a di-allelic marker system [1]. Traditional isolation methods using partial genomic libraries are time-consuming and costintensive. In order to directly generate microsatellites from large-insert libraries a sequencing approach with repeat-containing oligonucleotides is introduced.
Results: Seventeen porcine microsatellite markers were isolated from eleven PAC clones by targeted oligonucleotide-mediated microsatellite identification (TOMMI), an improved efficient and rapid flanking sequence-based approach for the isolation of STS-markers. With the application of TOMMI, an average of 1.55 (CA/GT) microsatellites per PAC clone was identified. The number of alleles, allele size distribution, polymorphism information content (PIC), average heterozygosity (HT), and effective allele number (NE) for the STS-markers were calculated using a sampling of 336 unrelated animals representing fifteen pig breeds (nine European and six Chinese breeds). Sixteen of the microsatellite markers proved to be polymorphic (2 to 22 alleles) in this heterogeneous sampling. Most of the publicly available (porcine) microsatellite amplicons range from approximately 80 bp to 200 bp. Here, we attempted to utilize as much sequence information as possible to develop STS-markers with larger amplicons. Indeed, fourteen of the seventeen STS-marker amplicons have minimal allele sizes of at least 200 bp. Thus, most of the generated STS-markers can easily be integrated into multilocus assays covering a broader separation spectrum. Linkage mapping results of the markers indicate their potential immediate use in QTL studies to further dissect trait associated chromosomal regions.
Conclusion: The sequencing strategy described in this study provides a targeted, inexpensive and fast method to develop microsatellites from large-insert libraries. It is well suited to generate polymorphic markers for selected chromosomal regions, contigs of overlapping clones and yields sufficient high quality sequence data to develop amplicons greater than 250 base
Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones
BACKGROUND: In the last few years, microsatellites have become the most popular molecular marker system and have intensively been applied in genome mapping, biodiversity and phylogeny studies of livestock. Compared to single nucleotide polymorphism (SNP) as another popular marker system, microsatellites reveal obvious advantages. They are multi-allelic, possibly more polymorphic and cheaper to genotype. Calculations showed that a multi-allelic marker system always has more power to detect Linkage Disequilibrium (LD) than does a di-allelic marker system [1]. Traditional isolation methods using partial genomic libraries are time-consuming and cost-intensive. In order to directly generate microsatellites from large-insert libraries a sequencing approach with repeat-containing oligonucleotides is introduced. RESULTS: Seventeen porcine microsatellite markers were isolated from eleven PAC clones by targeted oligonucleotide-mediated microsatellite identification (TOMMI), an improved efficient and rapid flanking sequence-based approach for the isolation of STS-markers. With the application of TOMMI, an average of 1.55 (CA/GT) microsatellites per PAC clone was identified. The number of alleles, allele size distribution, polymorphism information content (PIC), average heterozygosity (H(T)), and effective allele number (N(E)) for the STS-markers were calculated using a sampling of 336 unrelated animals representing fifteen pig breeds (nine European and six Chinese breeds). Sixteen of the microsatellite markers proved to be polymorphic (2 to 22 alleles) in this heterogeneous sampling. Most of the publicly available (porcine) microsatellite amplicons range from approximately 80 bp to 200 bp. Here, we attempted to utilize as much sequence information as possible to develop STS-markers with larger amplicons. Indeed, fourteen of the seventeen STS-marker amplicons have minimal allele sizes of at least 200 bp. Thus, most of the generated STS-markers can easily be integrated into multilocus assays covering a broader separation spectrum. Linkage mapping results of the markers indicate their potential immediate use in QTL studies to further dissect trait associated chromosomal regions. CONCLUSION: The sequencing strategy described in this study provides a targeted, inexpensive and fast method to develop microsatellites from large-insert libraries. It is well suited to generate polymorphic markers for selected chromosomal regions, contigs of overlapping clones and yields sufficient high quality sequence data to develop amplicons greater than 250 bases
Molecular Classification of Neuroendocrine Tumors of the Thymus
INTRODUCTION: The WHO classification of pulmonary neuroendocrine tumors (PNETs) is also used to classify thymic NETs (TNETs) into typical and atypical carcinoid (TC and AC), large cell neuroendocrine carcinoma (LCNEC), and small cell carcinoma (SCC), but little is known about the usability of alternative classification systems. METHODS: One hundred seven TNET (22 TC, 51 AC, 28 LCNEC, and 6 SCC) from 103 patients were classified according to the WHO, the European Neuroendocrine Tumor Society, and a grading-related PNET classification. Low coverage whole-genome sequencing and immunohistochemical studies were performed in 63 cases. A copy number instability (CNI) score was applied to compare tumors. Eleven LCNEC were further analyzed using targeted next-generation sequencing. Morphologic classifications were tested against molecular features. RESULTS: Whole-genome sequencing data fell into three clusters: CNIlow, CNIint, and CNIhigh. CNIlow and CNIint comprised not only TC and AC, but also six LCNECs. CNIhigh contained all SCC and nine LCNEC, but also three AC. No morphologic classification was able to predict the CNI cluster. Cases where primary tumors and metastases were available showed progression from low-grade to higher-grade histologies. Analysis of LCNEC revealed a subgroup of intermediate NET G3 tumors that differed from LCNEC by carcinoid morphology, expression of chromogranin, and negativity for enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). CONCLUSIONS: TNETs fall into three molecular subgroups that are not reflected by the current WHO classification. Given the large overlap between TC and AC on the one hand, and AC and LCNEC on the other, we propose a morphomolecular grading system, Thy-NET G1-G3, instead of histologic classification for patient stratification and prognostication. peerReviewe
Temporary antimetabolite treatment hold boosts SARS-CoV-2 vaccinationâspecific humoral and cellular immunity in kidney transplant recipients
Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from patients with autoimmune disorders suggest that temporary MPA hold might greatly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during a temporary (5 weeks) MPA/azathioprine hold, who had not mounted a humoral immune response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus-neutralizing capacity. Interestingly, 21/25 (84%) calcineurin inhibitor-treated patients responded, but only 1/4 belatacept-treated patients responded. In line with humoral responses. counts and relative frequencies of spike receptor binding domain-specific (RBD-specific) B cells were markedly increased on day 7 after vaccination, with an increase in RBD-specific CD27(++)CD38(+) plasmablasts. Whereas overall proportions of spike-reactive CD4(+) T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67(+) and in vivo-activated programmed cell death 1-positive T cells significantly increased after revaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of antimetabolite hold in kidney transplant recipients
Donor-Derived Cell-Free DNA for Kidney Allograft Surveillance after Conversion to Belatacept: Prospective Pilot Study
Donor-derived cell-free DNA (dd-cfDNA) is used as a biomarker for detection of antibody-mediated rejection (ABMR) and other forms of graft injury. Another potential indication is guidance of immunosuppressive therapy when no therapeutic drug monitoring is available. In such situations, detection of patients with overt or subclinical graft injury is important to personalize immunosuppression. We prospectively measured dd-cfDNA in 22 kidney transplant recipients (KTR) over a period of 6 months after conversion to belatacept for clinical indication and assessed routine clinical parameters. Patient and graft survival was 100% after 6 months, and eGFR remained stable (28.7 vs. 31.1 mL/min/1.73 m2, p = 0.60). Out of 22 patients, 2 (9%) developed biopsy-proven rejectionâone episode of low-grade TCMR IA and one episode of caABMR. While both episodes were detected by increase in creatinine, the caABMR episode led to increase in absolute dd-cfDNA (168 copies/mL) above the cut-off of 50 copies/mL, while the TCMR episode did show slightly increased relative dd-cfDNA (0.85%) despite normal absolute dd-cfDNA (22 copies/mL). Dd-cfDNA did not differ before and after conversion in a subgroup of 12 KTR with previous calcineurin inhibitor therapy and no rejection (12.5 vs. 25.3 copies/mL, p = 0.34). In this subgroup, 3/12 (25%) patients showed increase of absolute dd-cfDNA above the prespecified cut-off (50 copies/mL) despite improving eGFR. Increase in dd-cfDNA after conversion to belatacept is common and could point towards subclinical allograft injury. To detect subclinical TCMR changes without vascular lesions, additional biomarkers or urinary dd-cfDNA should complement plasma dd-cfDNA. Resolving CNI toxicity is unlikely to be detected by decreased dd-cfDNA levels. In summary, the sole determination of dd-cfDNA has limited utility in the guidance of patients after late conversion to belatacept. Further studies should focus on patients undergoing early conversion and include protocol biopsies at least for patients with increased dd-cfDNA
Perspective for Donor-Derived Cell-Free DNA in Antibody-Mediated Rejection After Kidney Transplantation: Defining Context of Use and Clinical Implications
Antibody-mediated rejection (AMR) is a major cause of graft failure limiting long-term graft survival after kidney transplantation. Current diagnostic strategy to detect AMR is suboptimal and requires further improvement. Previously suggested treatment regimens for AMR could not demonstrate efficacy, however novel therapeutic agents are currently under investigation. Donor-derived cell-free DNA (dd-cfDNA) is a novel non-invasive biomarker for allograft injury, that has been mainly studied in the context of rejection. Its short-half-life in circulation and injury-dependent release are its key advantages that contribute to its superior diagnostic accuracy, compared to traditional biomarkers. Moreover, previous studies showed that dd-cfDNA-release is well-linked to histological and molecular features of AMR, and thus able to reflect real-time injury. Further observations suggest that dd-cfDNA can be used as a suitable screening tool for early detection of AMR in patients with donor-specific-anti-HLA-antibodies (DSA), as well as for monitoring AMR activity after anti-rejection treatment. The weight of evidence suggests that the integration of dd-cfDNA in the graft surveillance of patients with AMR, or those suspicious of AMR (e.g., due to the presence of donor-specific anti-HLA-antibodies) has an added value and might have a positive impact on outcomes in this specific cohort