86 research outputs found

    Climate Ready Estuaries - COAST in Action: 2012 Projects from Maine and New Hampshire

    Get PDF
    In summer 2011 the US EPA’s Climate Ready Estuaries program awarded funds to the Casco Bay Estuary Partnership (CBEP) in Portland, Maine, and the Piscataqua Region Estuaries Partnership (PREP) in coastal New Hampshire, to further develop and use COAST (COastal Adaptation to Sea level rise Tool) in their sea level rise adaptation planning processes. The New England Environmental Finance Center worked with municipal staff, elected officials, and other stakeholders to select specific locations, vulnerable assets, and adaptation actions to model using COAST. The EFC then collected the appropriate base data layers, ran the COAST simulations, and provided visual, numeric, and presentation-based products in support of the planning processes underway in both locations. These products helped galvanize support for the adaptation planning efforts. Through facilitated meetings they also led to stakeholders identifying specific action steps and begin to determine how to implement them

    The water consumption of energy production: an international comparison

    Get PDF
    Producing energy resources requires significant quantities of fresh water. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. Many reports have identified the water consumption of various energy production technologies. This paper synthesizes and expands upon this previous work by exploring the geographic distribution of water use by national energy portfolios. By defining and calculating an indicator to compare the water consumption of energy production for over 150 countries, we estimate that approximately 52 billion cubic meters of fresh water is consumed annually for global energy production. Further, in consolidating the data, it became clear that both the quality of the data and global reporting standards should be improved to track this important variable at the global scale. By introducing a consistent indicator to empirically assess coupled water–energy systems, it is hoped that this research will provide greater visibility into the magnitude of water use for energy production at the national and global scales

    Multiple metrics for quantifying the intensity of water consumption of energy production

    Get PDF
    Discussion of the environmental implications of worldwide energy demand is currently dominated by the effects of carbon dioxide (CO[subscript 2]) emissions on global climate. At the regional scale, however, water resource challenges associated with energy systems are a growing concern. This paper, based on an inventory of national energy portfolios, posits an indicator-based framework for characterizing regional energy portfolios' relative water intensity. These calculations extend upon a previous paper that established a method for calculating the national water consumption of energy production (WCEP) at the global level. Intensity indicators are based on normalizing the WCEP results with a set of additional indicators (including population, gross domestic product, total energy production, and regional water availability). The results show great variability in water consumption across nations, as well as across the various water intensity measures that were applied. Therefore, it is best to apply this full suite of indicators to each country to develop an integrated understanding of the intensity of water use for energy across countries

    Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy

    Get PDF
    Recent literature, the US Global Change Research Program’s National Climate Assessment, and recent events, such as Hurricane Sandy, highlight the need to take better account of both storm surge and sea-level rise (SLR) in assessing coastal risks of climate change. This study combines three models—a tropical cyclone simulation model; a storm surge model; and a model for economic impact and adaptation—to estimate the joint effects of storm surge and SLR for the US coast through 2100. The model is tested using multiple SLR scenarios, including those incorporating estimates of dynamic ice-sheet melting, two global greenhouse gas (GHG) mitigation policy scenarios, and multiple general circulation model climate sensitivities. The results illustrate that a large area of coastal land and property is at risk of damage from storm surge today; that land area and economic value at risk expands over time as seas rise and as storms become more intense; that adaptation is a cost-effective response to this risk, but residual impacts remain after adaptation measures are in place; that incorporating site-specific episodic storm surge increases national damage estimates by a factor of two relative to SLR-only estimates, with greater impact on the East and Gulf coasts; and that mitigation of GHGs contributes to significant lessening of damages. For a mid-range climate-sensitivity scenario that incorporates dynamic ice sheet melting, the approach yields national estimates of the impacts of storm surge and SLR of 990billionthrough2100(netofadaptation,cumulativeundiscounted2005990 billion through 2100 (net of adaptation, cumulative undiscounted 2005); GHG mitigation policy reduces the impacts of the mid-range climate-sensitivity estimates by 84to84 to 100 billion.United States. Environmental Protection Agency. Climate Change Division (Contract EP-D-09-054)United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0024

    Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    Get PDF
    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a limited number of adaptation strategies, and apply the method using results of two climate models. In this paper, adaptation costs are defined as those for providing enough raw water to meet future industrial and municipal water demand, based on country-level demand projections to 2050. We first estimate costs for a baseline scenario excluding climate change, and then additional climate change adaptation costs. Increased demand is assumed to be met through a combination of increased reservoir yield and alternative backstop measures. Under such controversial measures, we project global adaptation costs of 12bnp.a.,with839012 bn p.a., with 83-90% in developing countries; the highest costs are in Sub-Saharan Africa. Globally, adaptation costs are low compared to baseline costs (73 bn p.a.), which supports the notion of mainstreaming climate change adaptation into broader policy aims. The method provides a tool for estimating broad costs at the global and regional scale; such information is of key importance in international negotiations. © 2010 IOP Publishing Ltd

    Framework for sustained climate assessment in the United States

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report

    How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies

    Get PDF
    Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water
    corecore