8,545 research outputs found

    Lifshitz Tails in Constant Magnetic Fields

    Get PDF
    We consider the 2D Landau Hamiltonian HH perturbed by a random alloy-type potential, and investigate the Lifshitz tails, i.e. the asymptotic behavior of the corresponding integrated density of states (IDS) near the edges in the spectrum of HH. If a given edge coincides with a Landau level, we obtain different asymptotic formulae for power-like, exponential sub-Gaussian, and super-Gaussian decay of the one-site potential. If the edge is away from the Landau levels, we impose a rational-flux assumption on the magnetic field, consider compactly supported one-site potentials, and formulate a theorem which is analogous to a result obtained in the case of a vanishing magnetic field

    Global Bounds for the Lyapunov Exponent and the Integrated Density of States of Random Schr\"odinger Operators in One Dimension

    Full text link
    In this article we prove an upper bound for the Lyapunov exponent γ(E)\gamma(E) and a two-sided bound for the integrated density of states N(E)N(E) at an arbitrary energy E>0E>0 of random Schr\"odinger operators in one dimension. These Schr\"odinger operators are given by potentials of identical shape centered at every lattice site but with non-overlapping supports and with randomly varying coupling constants. Both types of bounds only involve scattering data for the single-site potential. They show in particular that both γ(E)\gamma(E) and N(E)E/πN(E)-\sqrt{E}/\pi decay at infinity at least like 1/E1/\sqrt{E}. As an example we consider the random Kronig-Penney model.Comment: 9 page

    Cardiac arrest and COVID-19: inflammation, angiotensin-converting enzyme 2, and the destabilization of non-significant coronary artery disease-a case report.

    Get PDF
    The new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to exhibit cardiovascular pathogenicity through use of angiotensin-converting enzyme 2 (ACE2) for cell entry and the development of a major systemic inflammation. Furthermore, cardiovascular comorbidities increase susceptibility to SARS-CoV-2 infection and the development of a severe form of COronaVIrus Disease 2019 (COVID-19). We describe the case of a COVID-19 patient whose inaugural presentation was a refractory cardiac arrest secondary to the destabilization of known, non-significant coronary artery disease. Patient was supported by venoarterial extracorporeal life support. After 12 h of support, cardiac function remained stable on low vasopressor support but the patient remained in a coma and brainstem death was diagnosed. Myocardial injury is frequently seen among critically unwell COVID-19 patients and increases the risk of mortality. This case illustrates several potential mechanisms that are thought to drive the cardiac complications seen in COVID-19. We present the potential role of inflammation and ACE2 in the pathophysiology of COVID-19

    Cytogenetic studies of PCB77 on brown trout (<i>Salmo trutta fario</i>) using the micronucleus test and the alkaline comet assay

    Get PDF
    Polychlorinated biphenyls (PCBs) are stable pollutants, which can be found in almost every compartment of terrestrial and aquatic ecosystems. They are very lipophilic and therefore have the potency of accumulating in the fat stores of animals. The mechanisms by which PCBs exert their adverse effects are still unclear. It is known that PCBs induce some important biotransformation enzymes, but their mutagenic properties are still controversial. The DNA breakage and clastogenic potency of a planar PCB77 (3,3',4,4'-tetrachlorobiphenyl) was determined in vivo in fish, using the single cell gel electrophoresis or comet assay and the micronucleus test, on erythrocytes of the brown trout exposed for 3, 9 and 14 days to initial PCB concentrations of 780 and 918 pg/ml, dissolved in the water, Blood was taken by a caudal puncture and the erythrocytes were either deposited in an agarose gel (0.6%) for the comet assay or smeared directly on slides for the micronucleus test. Five fish were studied per treatment and 50 and 2000 erythrocytes per concentration and per animal were analysed for the comet assay and the micronucleus test respectively. ethyl methanesulphonate (EMS) at a concentration of 25 mg/l water was used as a positive control. Although EMS induced a statistically significant increase of single strand breaks in the comet assay, in neither of the two tests used, were mutagenic effects due to PCB exposure observed

    Pulmonary complications associated with veno-arterial extra-corporeal membrane oxygenation: a comprehensive review.

    Get PDF
    Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a life-saving technology that provides transient respiratory and circulatory support for patients with profound cardiogenic shock or refractory cardiac arrest. Among its potential complications, VA-ECMO may adversely affect lung function through various pathophysiological mechanisms. The interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response which may increase pulmonary vascular permeability and promote the sequestration of polymorphonuclear neutrophils within the lung parenchyma. Also, VA-ECMO increases the afterload of the left ventricle (LV) through reverse flow within the thoracic aorta, resulting in increased LV filling pressure and pulmonary congestion. Furthermore, VA-ECMO may result in long-standing pulmonary hypoxia, due to partial shunting of the pulmonary circulation and to reduced pulsatile blood flow within the bronchial circulation. Ultimately, these different abnormalities may result in a state of persisting lung inflammation and fibrotic changes with concomitant functional impairment, which may compromise weaning from VA-ECMO and could possibly result in long-term lung dysfunction. This review presents the mechanisms of lung damage and dysfunction under VA-ECMO and discusses potential strategies to prevent and treat such alterations

    Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    Full text link
    Statistical γ\gamma-decay from highly excited states is determined by the nuclear level density (NLD) and the γ\gamma-ray strength function (γ\gammaSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γ\gammaSF to evaluate the γ\gamma-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.Comment: CGS16, Shanghai 2017, Proceedings, 5 pages, 3 figure

    Inverse Scattering for Gratings and Wave Guides

    Full text link
    We consider the problem of unique identification of dielectric coefficients for gratings and sound speeds for wave guides from scattering data. We prove that the "propagating modes" given for all frequencies uniquely determine these coefficients. The gratings may contain conductors as well as dielectrics and the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page

    The weak localization for the alloy-type Anderson model on a cubic lattice

    Full text link
    We consider alloy type random Schr\"odinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter λ\lambda is small, for the energies ECλ2E \le -C \lambda^2.Comment: 45 pages, 2 figures. To appear in J. Stat. Phy

    Electrochemical and spectroscopic studies of pyridazine derivatives

    Get PDF
    This work reports on cyclic voltammetry and spectroscopic UV-Vis investigations of some pyridazine derivatives 1-8 in dimethylformamide. In the electrochemical study, monochlorinated pyridazines 2-8 exhibit two reductions but in the case of dichlorinated derivative 1 an additional wave is seen for the reduction of the second carbon-chloride bond. The electronic absorption spectra display an intramolecular charge transfer band π-π* in the UV region of which depend substantially on the nature of both donor and acceptor moieties. These results indicate the π-electron delocalization in the conjugated system

    The prognostic value of pulmonary artery compliance in cardiogenic shock.

    Get PDF
    The aim of this study was to evaluate the pathophysiological role and the prognostic significance of pulmonary artery compliance (C &lt;sub&gt;PA&lt;/sub&gt; ), a measure of right ventricular pulsatile afterload, in cardiogenic shock. We retrospectively included 91 consecutive patients with cardiogenic shock due to primary left ventricular failure, monitored with a pulmonary artery catheter within the first 24 h. C &lt;sub&gt;PA&lt;/sub&gt; was calculated as the ratio of stroke volume to pulmonary artery pulse pressure, and we determined whether C &lt;sub&gt;PA&lt;/sub&gt; predicted mortality and whether it performed better than other pulmonary hemodynamic variables. The overall in-hospital mortality in our cohort was 27%. Survivors and nonsurvivors had comparable left ventricular ejection fraction, systolic, diastolic and mean pulmonary artery pressure, transpulmonary gradient, diastolic pressure gradient, and pulmonary vascular resistance at 24 h. In contrast, C &lt;sub&gt;PA&lt;/sub&gt; was the only pulmonary artery variable significantly associated with mortality in univariate and multivariate analyses. Mortality increased from 4.5% at the highest quartile of C &lt;sub&gt;PA&lt;/sub&gt; (3.6-6.5 mL/mmHg) to 43.5% at the lowest quartile (0.7-1.7 mL/mmHg). In 64 patients with a PAC inserted immediately upon admission, we calculated the trend of C &lt;sub&gt;PA&lt;/sub&gt; between admission and 24 h. This trend was positive in survivors (+0.8 ± 1.3 ml/mmHg) but negative in nonsurvivors (-0.1 ± 1.0 mL/mmHg). The lower C &lt;sub&gt;PA&lt;/sub&gt; in nonsurvivors was associated with more severe right ventricular systolic dysfunction. In conclusion, a reduced compliance of the pulmonary artery promotes right ventricular dysfunction and is independently associated with mortality in cardiogenic shock. Future studies should evaluate the impact on pulmonary arterial compliance and right ventricular afterload of therapies used in cardiogenic shock
    corecore