7,624 research outputs found

    Preheating after N-flation

    Full text link
    We study preheating in N-flation, assuming the Mar\v{c}enko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.Comment: 14 pages, 14 figures, references added, fixed typo

    Global Bounds for the Lyapunov Exponent and the Integrated Density of States of Random Schr\"odinger Operators in One Dimension

    Full text link
    In this article we prove an upper bound for the Lyapunov exponent γ(E)\gamma(E) and a two-sided bound for the integrated density of states N(E)N(E) at an arbitrary energy E>0E>0 of random Schr\"odinger operators in one dimension. These Schr\"odinger operators are given by potentials of identical shape centered at every lattice site but with non-overlapping supports and with randomly varying coupling constants. Both types of bounds only involve scattering data for the single-site potential. They show in particular that both γ(E)\gamma(E) and N(E)E/πN(E)-\sqrt{E}/\pi decay at infinity at least like 1/E1/\sqrt{E}. As an example we consider the random Kronig-Penney model.Comment: 9 page

    Inverse Scattering for Gratings and Wave Guides

    Full text link
    We consider the problem of unique identification of dielectric coefficients for gratings and sound speeds for wave guides from scattering data. We prove that the "propagating modes" given for all frequencies uniquely determine these coefficients. The gratings may contain conductors as well as dielectrics and the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page

    Scattering Theory Approach to Random Schroedinger Operators in One Dimension

    Get PDF
    Methods from scattering theory are introduced to analyze random Schroedinger operators in one dimension by applying a volume cutoff to the potential. The key ingredient is the Lifshitz-Krein spectral shift function, which is related to the scattering phase by the theorem of Birman and Krein. The spectral shift density is defined as the "thermodynamic limit" of the spectral shift function per unit length of the interaction region. This density is shown to be equal to the difference of the densities of states for the free and the interacting Hamiltonians. Based on this construction, we give a new proof of the Thouless formula. We provide a prescription how to obtain the Lyapunov exponent from the scattering matrix, which suggest a way how to extend this notion to the higher dimensional case. This prescription also allows a characterization of those energies which have vanishing Lyapunov exponent.Comment: 1 figur

    The repulsion between localization centers in the Anderson model

    Full text link
    In this note we show that, a simple combination of deep results in the theory of random Schr\"odinger operators yields a quantitative estimate of the fact that the localization centers become far apart, as corresponding energies are close together

    Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements

    Get PDF
    International audienceWe consider non-absorbing inhomogeneous media represented by some refraction index. We have developed a method to reconstruct, from far-field measurements, the shape of the areas where the actual index differs from a reference index. Following the principle of the Factorization Method, we present a fast reconstruction algorithm relying on far field measurements and near field values, easily computed from the reference index. Our reconstruction result is illustrated by several numerical test cases

    Modular Networks: Learning to Decompose Neural Computation

    Get PDF
    Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts

    Eigenvalue Bounds for Perturbations of Schrodinger Operators and Jacobi Matrices With Regular Ground States

    Get PDF
    We prove general comparison theorems for eigenvalues of perturbed Schrodinger operators that allow proof of Lieb--Thirring bounds for suitable non-free Schrodinger operators and Jacobi matrices.Comment: 11 page

    Spectra of Discrete Schr\"odinger Operators with Primitive Invertible Substitution Potentials

    Full text link
    We study the spectral properties of discrete Schr\"odinger operators with potentials given by primitive invertible substitution sequences (or by Sturmian sequences whose rotation angle has an eventually periodic continued fraction expansion, a strictly larger class than primitive invertible substitution sequences). It is known that operators from this family have spectra which are Cantor sets of zero Lebesgue measure. We show that the Hausdorff dimension of this set tends to 11 as coupling constant λ\lambda tends to 00. Moreover, we also show that at small coupling constant, all gaps allowed by the gap labeling theorem are open and furthermore open linearly with respect to λ\lambda. Additionally, we show that, in the small coupling regime, the density of states measure for an operator in this family is exact dimensional. The dimension of the density of states measure is strictly smaller than the Hausdorff dimension of the spectrum and tends to 11 as λ\lambda tends to 00
    corecore