5,802 research outputs found

    Prospects of detecting massive isosinglet neutrino at LHC in the CMS detector

    Get PDF
    A possibility to search for a heavy isosinglet (sterile) neutrino using its decay mode Ξ½sβ†’lΒ±+2jets\nu_s \to l^{\pm} + 2 jets in the SS - channel production ppβ†’Wβˆ—+Xβ†’lΒ±Ξ½s+Xpp \to W^* + X \to l^{\pm}\nu_s + X in the CMS experiment is studied. The only assumption about the heavy neutrino is its nonzero mixing with Ξ½e\nu_e or Ξ½ΞΌ\nu_{\mu}. The corresponding CMS discovery potential expressed in terms of the heavy neutrino mass and the mixing parameter between the heavy and light neutrino is determined. It is shown that the heavy neutrino with a mass up to 800 GeVGeV could be detected in CMS. We also investigate the production of the heavy neutrino NlN_l mixed with Ξ½e\nu_e and/or Ξ½ΞΌ\nu_{\mu} in the SUC(3)βŠ—SUL(2)βŠ—SUR(2)βŠ—U(1)SU_C(3) \otimes SU_L(2) \otimes SU_R(2)\otimes U(1) model through the reaction ppβ†’WR+Xβ†’lΒ±Nl+Xpp \to W_R + X \to l^{\pm}N_l + X with the same heavy neutrino decay channel as above. We find that for MWR<3TeVM_{W_R} < 3 TeV it is possible to discover the heavy neutrino with a mass up to 0.75β‹…MWR0.75 \cdot M_{W_R}.Comment: 14 pages, 13 figure

    The exact tree-level calculation of the dark photon production in high-energy electron scattering at the CERN SPS

    Full text link
    Dark photon (Aβ€²A') that couples to the standard model fermions via the kinetic mixing with photons and serves as a mediator of dark matter production could be observed in the high-energy electron scattering eβˆ’+ZΒ β†’eβˆ’+Z+Aβ€²e^- + Z ~\rightarrow e^- + Z + A' off nuclei followed by the Aβ€²β†’invisibleA' \to invisible decay. We have performed the exact, tree-level calculations of the Aβ€²A' production cross sections and implemented them in the program for the full simulation of such events in the experiment NA64 at the CERN SPS. Using simulations results, we study the missing energy signature for the bremsstrahlung Aβ€²β†’A' \rightarrow invisible decay that permits the determination of the Ξ³βˆ’Aβ€²\gamma-A' mixing strength in a wide, from sub-MeV to sub-GeV, Aβ€²A' mass range. We refine and expand our earlier studies of this signature for discovering Aβ€²A' by including corrections to the previously used calculations based on the improved Weizsaker-Williams approximation, which turn out to be significant. We compare our cross sections values with the results from other calculations and find a good agreement between them. The possibility of future measurements with high-energy electron beams and the sensitivity to Aβ€²A' are briefly discussed.Comment: 11 pages, 6 figures, revised version, improved cross-section integrator is used, comparison with bremsstrahlung spectrum is added, final conclusions remain unchange

    Missing energy signature from invisible decays of dark photons at the CERN SPS

    Full text link
    The dark photon (Aβ€²A') production through the mixing with the bremsstrahlung photon from the electron scattering off nuclei can be accompanied by the dominant invisible Aβ€²A' decay into dark-sector particles. In this work we discuss the missing energy signature of this process in the experiment NA64 aiming at the search for Aβ€²β†’invisibleA'\to invisible decays with a high-energy electron beam at the CERN SPS. We show the distinctive distributions of variables that can be used to distinguish the Aβ€²β†’invisibleA'\to invisible signal from background. The results of the detailed simulation of the detector response for the events with and without Aβ€²A' emission are presented. The efficiency of the signal event selection is estimated. It is used to evaluate the sensitivity of the experiment and show that it allows to probe the still unexplored area of the mixing strength 10βˆ’6≲ϡ≲10βˆ’210^{-6}\lesssim \epsilon \lesssim 10^{-2} and masses up to MA′≲1M_{A'} \lesssim 1 GeV. The results obtained are compared with the results from other calculations. In the case of the signal observation, a possibility of extraction of the parameters MAβ€²M_{A'} and Ο΅\epsilon by using the missing energy spectrum shape is discussed. We consider as an example the Aβ€²A' with the mass 16.7 MeV and mixing ϡ≲10βˆ’3\epsilon \lesssim 10^{-3}, which can explain an excess of events recently observed in nuclear transitions of an excited state of 8^8Be. We show that if such Aβ€²A' exists its invisible decay can be observed in NA64 within a month of running, while data accumulated during a few months would allow also to determine the Ο΅\epsilon and MAβ€²M_{A'} parameters.Comment: 12 pages, 15 figures. Revised versio

    Simulation of the solidification of the melt in the Vanyukov furnace in the case of emergency stoppage

    Full text link
    A mathematical model of the Vanyukov furnace, which makes it possible to predict the behavior of an object in the emergency operational mode (upon the disconnection of the oxygen supply) and develop an effective system of additional heating which damps the consequences of the emergency mode and lowers the costs for the renovation of the furnace operation, is created. It is shown how solidification upon cooling the furnace with time is simulated using the enthalpy and porosity method. The mathematical model is adopted for existing production conditions, which are weakly defined. The energy characteristics of the mode for the solidifying furnace bath, which ensures its holding for a long time in the ready state to rapid firing, are found. Thus, the problem of excessively expensive furnace firing after prolonged production stoppage is solved in the conjugated statement with a calculation of the heating system of the overbath space. Β© 2013 Allerton Press, Inc

    Evaluation of individual-typological features of students of is professional-pedagogical institute

    Full text link
    The article deals with the diagnostics results in the sphere of students’ predisposition to the certain sphere of professional activity; the results of distribution between the students’ population into six types of the personalityΠΠ½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ диагностики прСдрасполоТСнности студСнтов ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ сфСрС ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ; приводятся Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ распрСдСлСния популяции обслСдуСмых студСнтов Π½Π° ΡˆΠ΅ΡΡ‚ΡŒ Ρ‚ΠΈΠΏΠΎΠ² личност

    Probing lepton flavour violation in νμ+N→τ+...\nu_{\mu} + N \to \tau + ... scattering and μ→tau\mu \to tau conversion on nucleons

    Full text link
    We study lepton flavour-violating interactions which could result in the Ο„\tau-lepton production in the Ξ½ΞΌN\nu_{\mu}N scattering or in ΞΌβ†’Ο„\mu \to \tau conversion on nucleons at high energies. Phenomenological bounds on the strength of Ο„Λ‰Ξ½ΞΌqΛ‰qβ€²\bar{\tau}\nu_{\mu}\bar{q}q^{'} interactions are extracted from the combined result of the NOMAD and CHORUS experiments on searching for Ξ½ΞΌβˆ’Ξ½Ο„\nu_{\mu} - \nu_{\tau} oscillations. Some of these bounds supersede limits from rare decays. We also propose a ``missing energy'' type experiment searching for ΞΌβˆ’Ο„\mu - \tau conversion on nucleons. The experiment can be performed at a present accelerator or at a future neutrino factory.Comment: 13 pages, 4 figure

    Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΒ­Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ построСния Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния

    Get PDF
    The authors showed that large dairy complexes for over 2,000 cows create an increased environmental burden on the environment. The main tasks arising in this case were named: creating an optimal indoor microclimate for different age and gender groups of animals; providing sparing and comfortable modes of technological, veterinary and sanitary care and keeping animals; waste recycling; increasing the productive longevity of cows up to 4-5 lactations. (Research purpose) To develop methodologies for modular construction of an expanded standard-size range of new generation automated and robotic livestock farms. (Materials and methods) The authors proposed the main criteria and indicators for building a "smart" farm: minimum feed costs per unit of production; reduced energy consumption; optimal capital intensity of equipment and engineering structures per one livestock place; the minimum cost per unit of production with its high quality. The authors received the criterion equation for the total functional of the dairy farm. (Results and discussion) The authors analyzed the structural and functional diagrams of various configuration and size dairy farms (T-H-shaped), including combined storage farms, which make it possible to create a combined functional and logistics infrastructure consisting of standard modular units. The authors proposed the concept of building a technological module for a "smart" robotic farm for 400 heads with combined sectional feed and waste storage facilities, a robotic milking parlor, a multifunctional electrified robotic feed loader-pusher-dispenser and equipment for microclimate differentiated provision. Β (Conclusions) The authors developed methods, models, structural and functional schemes for modular construction of new generation automated and robotic dairy farms of various shapes and sizes. Their following advantages were confirmed: the optimal construction time, a sparing effect on biological objects and the environment, an increase in the production digitalization and automation level, the animal productive longevity, the dairy farming profitability in general.Показали, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎ-Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹Π΅ комплСксы Π½Π° 2000 ΠΊΠΎΡ€ΠΎΠ² ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠΎΠ·Π΄Π°ΡŽΡ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΡƒΡŽ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду. Назвали основныС Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΈ этом Π·Π°Π΄Π°Ρ‡ΠΈ: созданиС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° Π² помСщСниях для Ρ€Π°Π·Π½Ρ‹Ρ… половозрастных Π³Ρ€ΡƒΠΏΠΏ; обСспСчСниС щадящих ΠΈ ΠΊΠΎΠΌΡ„ΠΎΡ€Ρ‚Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² тСхнологичСского ΠΈ Π²Π΅Ρ‚Π΅Ρ€ΠΈΠ½Π°Ρ€Π½ΠΎ-санитарного обслуТивания ΠΈ содСрТания ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…; ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ²; ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ долголСтия ΠΊΠΎΡ€ΠΎΠ² Π΄ΠΎ 4-5 Π»Π°ΠΊΡ‚Π°Ρ†ΠΈΠΉ. (ЦСль исслСдований) Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½ΠΎΠ³ΠΎ построСния Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ряда Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ТивотноводчСских Ρ„Π΅Ρ€ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния. (ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹) ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ основныС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ построСния Β«ΡƒΠΌΠ½ΠΎΠΉΒ» Ρ„Π΅Ρ€ΠΌΡ‹: ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ ΠΊΠΎΡ€ΠΌΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ; ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΉ расход энСргии; ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΊΠ°ΠΏΠΈΡ‚Π°Π»ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ оборудования ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… сооруТСний Π² расчСтС Β Π½Π° ΠΎΠ΄Π½ΠΎ скотомСсто; минимальная ΡΠ΅Π±Π΅ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ Π΅Π΅ высоком качСствС. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для суммарного Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ Β Ρ„Π΅Ρ€ΠΌΡ‹. (Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС) ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ схСмы ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² (Π’-Нобразной Ρ„ΠΎΡ€ΠΌΡ‹), Π² Ρ‚ΠΎΠΌ числС совмСщСнныС Ρ„Π΅Ρ€ΠΌΡ‹-Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-Π»ΠΎΠ³ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ инфраструктуру, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ†. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ построСния тСхнологичСского модуля Β«ΡƒΠΌΠ½ΠΎΠΉΒ» Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„Π΅Ρ€ΠΌΡ‹ Π½Π° 400 Π³ΠΎΠ»ΠΎΠ² с совмСщСнными сСкционными Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π°ΠΌΠΈ ΠΊΠΎΡ€ΠΌΠΎΠ² ΠΈ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ², Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π΄ΠΎΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π·Π°Π»ΠΎΠΌ, ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ элСктрифицированным Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎΠ³Ρ€ΡƒΠ·Ρ‡ΠΈΠΊΠΎΠΌ-ΠΏΠΎΠ΄ΠΎΠ΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΌ-ΠΊΠΎΡ€ΠΌΠΎΡ€Π°Π·Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠΌ ΠΈ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ для Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ обСспСчСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚Π°. (Π’Ρ‹Π²ΠΎΠ΄Ρ‹) Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ схСмы ΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½ΠΎΠ³ΠΎ построСния Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ»ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌ Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ ΠΈ Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². ΠŸΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΈ ΠΈΡ… прСимущСства: ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ сроки возвСдСния, щадящСС воздСйствиС Π½Π° биологичСскиС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ ΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ производства, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ долголСтия ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠ³ΠΎ Тивотноводства Π² Ρ†Π΅Π»ΠΎΠΌ
    • …
    corecore