575 research outputs found

    Ferromagnetic Detectors of Axions in RF (S - X) Band

    Get PDF
    The (pseudo) Goldstone bosons arise naturally in many modern theories such as supergravity, superstring theory and variants of general relativity with torsion. By the other hand, there are well known indications that a large part of the Universe mass exists in a form of dark matter. The most attractive model of the dark matter is non-relativistic gas of the light elementary particles weakly interacting with the "usual" matter \cite{b2} - \cite{b4}. We describe ferromagnetic detectors, for search of arion(axion), where a high-sensitive two-channel SHF receiver is used. Its sensitivity reaches to 10βˆ’20 Wt10^{-20}\,Wt, with time of accumulation 1βˆ’10 s1-10\,s. Fourier analysis of signal provides a survey in zone up to Β±50 KHz\pm50\,KHz with spectral resolution 0.1βˆ’25 Hz0.1 - 25\, Hz. There was applied a high sensitive SHF receiver based on a special computer method of coherent accumulation of signals. It is possible to use the receiver in other precise experiments: measuring of electron/positron beams polarization in storage rings, investigation of parity violation, investigation of atmosphere with radars etc.Comment: 6 pages, LaTeX, no figure

    The third International Conference of the Siberian Environmental Change Network (SecNet)

    Get PDF
    Proceedings publication preface

    Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia

    Get PDF
    To examine the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish a link between organic carbon (OC) and other chemical and microbiological parameters in forming thermokarst (thaw) lakes, we studied the biogeochemistry of OC and trace elements (TEs) in a chronosequence of small lakes that are being formed due to permafrost thawing in the northern part of western Siberia. Twenty lakes and small ponds of various sizes and ages were sampled for dissolved and colloidal organic carbon, metals and culturable heterotrophic bacterial cell number. We observed a sequence of ecosystems from peat thawing and palsa degradation due to permafrost subsidence in small ponds to large, km-size lakes that are subject to drainage to, finally, the khasyrey (drained lake) formation. There is a systematic evolution of both total dissolved and colloidal concentration of OC and TEs in the lake water along with the chronosequence of lake development that may be directly linked to the microbial mineralization of dissolved organic matter and the liberation of the inorganic components (Fe, Al, and TEs) from the organo-mineral colloids. <br><br> In this chronosequence of lake development, we observed an apparent decrease in the relative proportion of low molecular weight <1 kDa (1 kDa ~ 1 nm) OC concentration along with a decrease in the concentration of total dissolved (<0.45 ΞΌm) OC. This decrease was accompanied by an increase in the small size organic ligands (probably autochthonous exometabolites produced by the phytoplankton) and a simultaneous decrease in the proportion of large-size organic (humic) complexes of allochthonous (soil) origin. This evolution may be due to the activity of heterotrophic bacterioplankton that use allochthonous organic matter and dissolved nutrients originating from peat lixiviation. Most insoluble TEs demonstrate a systematic decrease in concentration during filtration (5 ΞΌm, 0.45 ΞΌm) exhibiting a similar pattern among different samples. At the same time, there is an increase in the relative proportion of large size particles over the <1 kDa fraction for most insoluble elements along the chronosequence of lake evolution. TEs are likely to be bound to colloidal OC and coprecipitate with the mineral (Fe, Al) part of the colloids. Upon progressive consumption of dissolved OC by the heterotrophic bacteria, there is liberation of Fe, Al, and insoluble TEs in the water column that may be subjected to coagulation in the form of particles or large-size mineral colloids

    Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles

    Get PDF
    PEGylated gold nanoparticles are decorated with various amounts of human transferrin (Tf) to give a series of Tf-targeted particles with near-constant size and electrokinetic potential. The effects of Tf content on nanoparticle tumor targeting were investigated in mice bearing s.c. Neuro2A tumors. Quantitative biodistributions of the nanoparticles 24 h after i.v. tail-vein injections show that the nanoparticle accumulations in the tumors and other organs are independent of Tf. However, the nanoparticle localizations within a particular organ are influenced by the Tf content. In tumor tissue, the content of targeting ligands significantly influences the number of nanoparticles localized within the cancer cells. In liver tissue, high Tf content leads to small amounts of the nanoparticles residing in hepatocytes, whereas most nanoparticles remain in nonparenchymal cells. These results suggest that targeted nanoparticles can provide greater intracellular delivery of therapeutic agents to the cancer cells within solid tumors than their nontargeted analogs

    A novel assay for monitoring internalization of nanocarrier coupled antibodies

    Get PDF
    BACKGROUND: Discovery of tumor-selective antibodies or antibody fragments is a promising approach for delivering therapeutic agents to antigen over-expressing cancers. Therefore it is important to develop methods for the identification of target- and function specific antibodies for effective drug delivery. Here we describe a highly selective and sensitive method for characterizing the internalizing potential of multivalently displayed antibodies or ligands conjugated to liposomes into tumor cells. The assay requires minute amounts of histidine-tagged ligand and relies on the non-covalent coupling of these antibodies to fluorescent liposomes containing a metal ion-chelating lipid. Following incubation of cells with antibody-conjugated liposomes, surface bound liposomes are gently removed and the remaining internalized liposomes are quantitated based on fluorescence in a high throughput manner. We have termed this methodology "Chelated Ligand Internalization Assay", or CLIA. RESULTS: The specificity of the assay was demonstrated with different antibodies to the ErbB-2 and EGF receptors. Antibody-uptake correlated with receptor expression levels in tumor cell lines with a range of receptor expression. Furthermore, Ni-NTA liposomes containing doxorubicin were used to screen for the ability of antibodies to confer target-specific cytotoxicity. Using an anti-ErbB2 single chain Fv (scFv) (F5) antibody, cytotoxicity could be conferred to ErbB2-overexpressing cells; however, a poly(ethylene glycol)-linked lipid (DSPE-PEG-NTA-Ni) was necessary to allow for efficient loading of the drug and to reduce nonspecific drug leakage during the course of the assay. CONCLUSION: The CLIA method we describe here represents a rapid, sensitive and robust assay for the identification and characterization of tumor-specific antibodies capable of high drug-delivery efficiency when conjugated to liposomal nanocarriers

    The relevance of the contemporary landscape-ecological and biogeochemical studies of the Ob floodplain

    Get PDF
    We have systematized and summarized the results of the Ob River floodplain studies and have shown that the flood and the floodplain influence all the territory of Western Siberia due to the processes happening there. The floodplain at different times was the object of interest of many scientists, but the total level of study of the Ob and the associated ground and the lake network water resources and quality can be generally assessed as low. The waters of the Ob middle course are quite polluted according to bacteria content. It is possible that a significant part oforganic and biogenic substances, microorganisms and some microelements come into the Ob floodplain waters from anthropogenic and natural sources distributed in the watersheds area. The soils of the Ob Riverfloodplain can be considered to be clean andfree ofany chemical pollution. In these soils, the amount of trace elements is small. To study the floodplain changes after a flood the methods of landscape ecology are used, such as the collection and analysis of stock and descriptive materials, literature and maps; the preparation of a series of component and general landscape maps. Nowadays a complex research of the Ob River and the adjacent surface waters is relevant

    Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements

    Get PDF
    IT-101, a cyclodextrin polymer-based nanoparticle containing camptothecin, is in clinical development for the treatment of cancer. Multiorgan pharmacokinetics and accumulation in tumor tissue of IT-101 is investigated by using PET. IT-101 is modified through the attachment of a 1,4,7,10-tetraazacyclododecane-1,4,7-Tris-acetic acid ligand to bind ^(64)Cu^(2+). This modification does not affect the particle size and minimally affects the surface charge of the resulting nanoparticles. PET data from ^(64)Cu-labeled IT-101 are used to quantify the in vivo biodistribution in mice bearing Neuro2A s.c. tumors. The ^(64)Cu-labeled IT-101 displays a biphasic plasma elimination. Approximately 8% of the injected dose is rapidly cleared as a low-molecular-weight fraction through the kidneys. The remaining material circulates in plasma with a terminal half-life of 13.3 h. Steadily increasing concentrations, up to 11% injected dose per cm^3, are observed in the tumor over 24 h, higher than any other tissue at that time. A 3-compartment model is used to determine vascular permeability and nanoparticle retention in tumors, and is able to accurately represent the experimental data. The calculated tumor vascular permeability indicates that the majority of nanoparticles stay intact in circulation and do not disassemble into individual polymer strands. A key assumption to modeling the tumor dynamics is that there is a β€œsink” for the nanoparticles within the tumor. Histological measurements using confocal microscopy show that IT-101 localizes within tumor cells and provides the sink in the tumor for the nanoparticles

    Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia Lowland

    Get PDF
    Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous, and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon (DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%, 37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from the same territory. However, given that the concentrations of DOC and metals in the smallest lakes (<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to the overall carbon and metal budget may be comparable to, or greater than, their contribution to the water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical measurements in aquatic systems of boreal plains
    • …
    corecore