50 research outputs found

    A mixed methods assessment of mHealth, nutrition behaviour change communication and unconditional cash transfers in rural Bangladesh: a gender-based approach

    Get PDF
    Gender equality is a prerequisite for health and wellbeing of women. There is data linking women's empowerment and nutrition program outcomes, however, there is a lack of evidence as to how evaluate the impact of programs on women's empowerment. Cash transfers can be used as a gender-sensitive development tool, though more thorough evidence is needed to understand the pathways to empowerment. mHealth interventions rarely consider gender in design. Many agricultural and home gardening interventions aim to improve the nutritional status of women and children by focusing on women as the recipients of the intervention and assume women will be empowered as a result. This research aims to assess the impact of nutrition BCC and unconditional cash transfers delivered on a mobile platform on women's empowerment in rural Bangladesh using a mixed methods approach. A systematic review provided evidence on how mHealth interventions can affect gender relations revealed the need for gender sensitive design. Qualitative methods were used to investigate potential changes in women’s empowerment in a pilot study in rural Bangladesh and to explore women’s experience of decision-making at the start of the SCC Trial. Quantitative analysis of Bangladesh Demographic and Health Survey (BDHS) provided the characteristics of women who do not participate in decision-making. The overall purpose of this thesis is to generate evidence for best practices for programmers and policy makers when assessing women's empowerment in nutrition interventions that aim to empower women in low and middle-income countries. This thesis has highlighted the importance of assessing the impact of nutrition-specific and -sensitive interventions on women's empowerment. My PhD research provides evidence of the significance of evaluating impact of the SCC Trial and adds to the methodology of assessing the relationship between mHealth, nutrition BCC and transfers and women’s empowerment

    Low temperature hydrogenation and hydrodeoxygenation of oxygen-substituted aromatics over Rh/silica: part 1 - phenol, anisole and 4-methoxyphenol

    Get PDF
    The hydrogenation and competitive hydrogenation of anisole, phenol and 4-methoxyphenol was studied in the liquid phase over a Rh/silica catalyst at 323 K and 3 barg hydrogen pressure. The rate of conversion of the reactants to products gave an order of anisole ≫ phenol > 4-methoxyphenol with hydrogenation and hydrodeoxygenation products being produced. Anisole, the most reactive substrate, was rapidly converted to methoxycyclohexane, cyclohexane, cyclohexanone and cyclohexanol, while phenol was hydrogenated to cyclohexanone, cyclohexanol and cyclohexane. In both cases cyclohexanol was produced as a secondary product from cyclohexanone hydrogenation. The yield of cyclohexane, the hydrodeoxygenation (HDO) product was > 20% from both reactants and was formed as a primary product from the aromatic species. Hydrogenation of 4-methoxyphenol was selective to 4-methoxycyclohexanone with no alcohol formation, while the hydrogenolysis products revealed that the catalyst was more active for demethoxylation than dehydroxylation. A comparative strength of adsorption was determined from competitive hydrogenation and gave an order of anisole > phenol > 4-methoxyphenol. Competitive, pair hydrogenation inhibited HDO and stopped cyclohexane from being produced from phenol and 4-methoxyphenol, although it was still produced from anisole. An increased rate of hydrogenation for 4-methoxyphenol was observed for competitive reactions with phenol and anisole but not when all three reactants were present. In contrast to the pair reactions, when all three reactants were present HDO occurred with all aromatics producing cyclohexane. Replacing hydrogen with deuterium revealed an inverse kinetic isotope effect for ring hydrogenation of 4-methoxyphenol but not phenol or anisole, which both had a positive KIE

    Competitive hydrogenation and hydrodeoxygenation of oxygen-substituted aromatics over Rh/silica: catechol, resorcinol and hydroquinone

    Get PDF
    The competitive hydrogenation and hydrodeoxygenation (HDO) of dihydroxybenzene isomers, catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene) and hydroquinone (1,4-dihydroxybenzene), was studied in the liquid phase over a Rh/silica catalyst at 323 K and 3 barg hydrogen pressure. Under competitive hydrogenation conditions an order of reactivity of ortho > para > meta was observed. Catechol initially inhibited resorcinol and hydroquinone hydrogenation but not HDO suggesting separate sites for hydrogenation and HDO. When resorcinol and hydroquinone were reacted competitively, HDO became the favoured reaction. The data suggested that cyclohexane and cyclohexanone were primary products. At low dihydroxybenzene (DHB) conversion the ratio of HDO products was dependent upon DHB isomer. When all three DHB isomers were reacted together, initially 86% of the HDO yield came from catechol with the rest from hydroquinone. When resorcinol finally reacted, HDO products were produced first. Reaction of DHB isomers in pairs using deuterium instead of hydrogen revealed changes in kinetic isotope effect (KIE). The presence of competing reactants had a dramatic effect on the energetics of hydrogenation and HDO reactions of individual components, reinforcing the view that hydrogenation and HDO are mechanistically separate. This effect on reaction energetics observed when more than one substrate was present, highlights the limitations of studying one single model compound as a route to understanding the processes required for the upgrading of a true bio-oil feed

    Hydrogenation and hydrodeoxygenation of oxygen-substituted aromatics over Rh/silica: catechol, resorcinol and hydroquinone

    Get PDF
    The hydrogenation and hydrodeoxygenation (HDO) of dihydroxybenzene isomers, catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene) and hydroquinone (1,4-dihydroxybenzene) was studied in the liquid phase over a Rh/silica catalyst at 303–343 K and 3 barg hydrogen pressure. The following order of reactivity, resorcinol > catechol > hydroquinone (meta > ortho > para) was obtained. Kinetic analysis revealed that catechol had a negative order of reaction whereas both hydroquinone and resorcinol gave positive half-order suggesting that catechol is more strongly adsorbed. Activation energies of ~30 kJ·mol−1 were determined for catechol and hydroquinone, while resorcinol gave a value of 41 kJ·mol−1. Resorcinol, and similarly hydroquinone, gave higher yields of the hydrogenolysis products (cyclohexanol, cyclohexanone and cyclohexane) with a cumulative yield of ~40%. In contrast catechol favoured hydrogenation, specifically to cis-1,2-dihydroxycyclohexane. It is proposed that cis-isomers are formed from hydrogenation of dihydroxycyclohexenes and high selectivity to cis-1,2-dihydroxycyclohexane can be explained by the enhanced stability of 1,2-dihydroxycyclohex-1-ene relative to other cyclohexene intermediates of catechol, resorcinol or hydroquinone. Trans-isomers are not formed by isomerisation of the equivalent cis-dihydroxycyclohexane but by direct hydrogenation of 2/3/4-hydroxycyclohexanone. The higher selectivity to HDO for resorcinol and hydroquinone may relate to the reactive surface cyclohexenes that have a C=C double bond β-γ to a hydroxyl group aiding hydrogenolysis. Using deuterium instead of hydrogen revealed that each isomer had a unique kinetic isotope effect and that HDO to cyclohexane was dramatically affected. The delay in the production of cyclohexane suggest that deuterium acted as an inhibitor and may have blocked the specific HDO site that results in cyclohexane formation. Carbon deposition was detected by temperature programmed oxidation (TPO) and revealed three surface species

    Revisiting Clickers: In-Class Questions Followed by At-Home Reflections Are Associated with Higher Student Performance on Related Exam Questions

    Get PDF
    Clicker questions are a commonly used active learning technique that stimulates student interactions to help advance understanding of key concepts. Clicker questions are often administered with an initial vote, peer discussion, and a second vote, followed by broader classroom explanation. While clickers can promote learning, some studies have questioned whether students maintain this performance on later exams, highlighting the need to further understand how student answer patterns relate to their understanding of the material and to identify ways for clickers to benefit a broader range of students. Systematic requizzing of concepts during at-home assignments represents a promising mechanism to improve student learning. Thus, we paired clicker questions with at-home follow-up reflections to help students articulate and synthesize their understandings. This pairing of clickers with homework allowed us to decipher how student answer patterns related to their underlying conceptions and to determine if revisiting concepts provided additional benefits. We found that students answering both clicker votes correctly performed better on isomorphic exam questions and that students who corrected their answers after the first vote did not show better homework or exam performance than students who maintained an incorrect answer across both votes. Furthermore, completing the followup homework assignment modestly boosted exam question performance. Our data suggest that longer-term benefits of clickers and associated homework may stem from students having repeated opportunities to retrieve, refine, and reinforce emerging conceptions

    Promoting neurological recovery of function via metaplasticity

    Get PDF
    The modification of synapses by neural activity has been proposed to be the substrate for experience-dependent brain development, learning, and recovery of visual function after brain injury. The effectiveness or ‘strength’ of synaptic transmission can be persistently modified in response to defined patterns of pre- and post-synaptic activity. Well-studied examples of this type of synaptic plasticity are long-term potentiation and long-term depression. Can we exploit the current understanding of these mechanisms in order to strengthen brain connections that may have been weakened or impaired by sensory deprivation, disease or injury? Theoretically motivated research in the visual cortex has suggested ways to promote synaptic potentiation. The theoretical concept is that the type and extent of synaptic plasticity caused by patterns of activity depend critically on the recent prior history of synaptic or cellular activity. Studies in visual cortex strongly support this concept, and have suggested a mechanism for ‘metaplasticity’ – the plasticity of synaptic plasticity – based on activity-dependent modification of NMDA-receptor structure and function. The knowledge gained by these studies suggests ways in which recovery of function can be promoted.National Institutes of Health (U.S.) (NIH/NEI Grant RO1 EYO12309

    Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma

    Get PDF
    The impact of bridging therapy (BT) on CD19-directed chimeric antigen receptor T-cell (CD19CAR-T) outcomes in large B-cell lymphoma (LBCL) is poorly characterised. Current practice is guided by physician preference rather than established evidence. Identification of effective BT modalities and factors predictive of response could improve CAR-T intention to treat and clinical outcomes. We assessed BT modality and response in 375 adult LBCL patients in relation to outcomes following axicabtagene ciloleucel (Axi-cel) or tisagenlecleucel (Tisa-cel). The majority of patients received BT with chemotherapy (57%) or radiotherapy (17%). We observed that BT was safe for patients, with minimal morbidity/mortality. We showed that complete or partial response to BT conferred a 42% reduction in disease progression and death following CD19CAR-T therapy. Multivariate analysis identified several factors associated with likelihood of response to BT, including response to last line therapy, the absence of bulky disease, and the use of Polatuzumab-containing chemotherapy regimens. Our data suggested that complete/partial response to BT may be more important for Tisa-cel than Axi-cel, as all Tisa-cel patients with less than partial response to BT experienced frank relapse within 12 months of CD19CAR-T infusion. In summary, BT in LBCL should be carefully planned towards optimal response and disease debulking, to improve CD19CAR-T patient outcomes. Polatuzumab-containing regimens should be strongly considered for all suitable patients, and failure to achieve complete/partial response to BT pre-Tisa-cel may prompt consideration of further lines of BT where possible

    Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma

    Get PDF
    The impact of bridging therapy (BT) on CD19-directed chimeric antigen receptor T-cell (CD19CAR-T) outcomes in large B-cell lymphoma (LBCL) is poorly characterized. Current practice is guided through physician preference rather than established evidence. Identification of effective BT modalities and factors predictive of response could improve both CAR-T intention to treat and clinical outcomes. We assessed BT modality and response in 375 adult patients with LBCL in relation to outcomes after axicabtagene ciloleucel (Axi-cel) or tisagenlecleucel (Tisa-cel) administration. The majority of patients received BT with chemotherapy (57%) or radiotherapy (17%). We observed that BT was safe for patients, with minimal morbidity or mortality. We showed that complete or partial response to BT conferred a 42% reduction in disease progression and death after CD19CAR-T therapy. Multivariate analysis identified several factors associated with likelihood of response to BT, including response to last line therapy, the absence of bulky disease, and the use of polatuzumab-containing chemotherapy regimens. Our data suggested that complete or partial response to BT may be more important for Tisa-cel than for Axi-cel, because all patients receiving Tisa-cel with less than partial response to BT experienced frank relapse within 12 months of CD19CAR-T infusion. In summary, BT in LBCL should be carefully planned toward optimal response and disease debulking, to improve patient outcomes associated with CD19CAR-T. Polatuzumab-containing regimens should be strongly considered for all suitable patients, and failure to achieve complete or partial response to BT before Tisa-cel administration may prompt consideration of further lines of BT where possible
    corecore