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Abstract
The modification of synapses by neural activity has been proposed to be the substrate for experience-
dependent brain development, learning, and recovery of visual function after brain injury. The
effectiveness or ‘strength’ of synaptic transmission can be persistently modified in response to
defined patterns of pre- and post-synaptic activity. Well-studied examples of this type of synaptic
plasticity are long-term potentiation and long-term depression. Can we exploit the current
understanding of these mechanisms in order to strengthen brain connections that may have been
weakened or impaired by sensory deprivation, disease or injury? Theoretically motivated research
in the visual cortex has suggested ways to promote synaptic potentiation. The theoretical concept is
that the type and extent of synaptic plasticity caused by patterns of activity depend critically on the
recent prior history of synaptic or cellular activity. Studies in visual cortex strongly support this
concept, and have suggested a mechanism for ‘metaplasticity’ – the plasticity of synaptic plasticity
– based on activity-dependent modification of NMDA-receptor structure and function. The
knowledge gained by these studies suggests ways in which recovery of function can be promoted.
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A common neurological consequence of impoverished sensory experience, brain disease and
nervous system injury is the loss or weakening of synaptic connections in the brain, leading to
impaired function. The best prospects for treating these conditions lie in tapping the potential
for synaptic plasticity of connections that remain intact. Long-term potentiation (LTP) is
induced at many excitatory synapses in the brain by strong activation of N-methyl-D-aspartate
receptors (NMDARs) [1,2]. Clearly, one approach to promoting recovery of function is to
provide the types of synaptic stimulation that trigger LTP through training and enriched
experience. However, this approach is limited by the simple fact that the synapses we wish to
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strongly activate are often precisely those that have been weakened by sensory deprivation or
disease. It may not be possible to strongly activate a feeble synapse enough to realize any gains.
An alternative approach would be to systematically change the properties of synaptic plasticity
so that even weak stimulation is enough. Are the properties of synaptic plasticity modifiable?
Here we review research on the consequences of sensory deprivation in visual cortex that
suggest the properties of synaptic plasticity depend on the recent history of cortical activity. A
mechanism for this meta-plasticity is the activity-dependent modification of NMDAR structure
and function. We suggest that this knowledge can be exploited to enhance recovery of function
in humans.

The roles of experience and deprivation on the function of visual cortex have been extensively
studied since the pioneering work of Wiesel and Hubel [3]. In species from mouse to man,
temporarily closing one eyelid early in postnatal life sets in motion a sequence of synaptic
changes in visual cortex. The first response to monocular deprivation (MD) is the loss of
responsiveness to the deprived eye, leading to a persistent impairment of vision. A second,
slower response is a compensatory increase in responsiveness to the nondeprived eye. These
changes have been studied in considerable detail in rodents, and a mechanistic understanding
is now emerging [4].

It should be noted that although the functional consequences of brief and prolonged deprivation
are similar, their structural underpinnings can be different. The earliest changes are best
described as ultrastructural–manifest, for example, as a modification in the glutamate-receptor
content of the postsynaptic membrane. Later changes (as first described by Hubel and Wiesel
and later retold in countless textbooks; e.g., [5]) can include gross modifications of
thalamocortical axon arbors. Despite these differences, however, the first step in structural
plasticity at any scale is the modification of synapses. Put another way, structural plasticity is
sequential, and the first step is the m odification of the strength of synaptic transmission.

Of particular interest in the current context is the process of open-eye potentiation. Closing
one eyelid has no effect on the qualities of visual experience through the nondeprived eye. Yet,
after a few days of MD, the open-eye responses potentiate [6,7]. This increase in visual
responsiveness requires activation of NMDARs in the cortex, and may use the same
mechanisms as LTP induced by electrical stimulation [8-10].

The idea that the threshold for LTP is variable and depends on the history of cortical activity
originates with the Bienenstock–Cooper–Munro (BCM) theory [11]. According to this theory,
active synapses potentiate when the concurrent level of integrated postsynaptic response
exceeds a ‘modification threshold’ (see Figure 1A). However, the modification threshold is
not fixed, but adjusts up and down with the time-average of integrated neuronal firing. Thus,
when neurons are quieted by deprivation of one eye, the threshold slides down and enables
potentiation of active inputs from the other eye [12,13]. The general concept that the properties
of synaptic plasticity depend on the history of cellular and synaptic activity is captured by the
term ‘meta-plasticity’ – the plasticity of synaptic plasticity [14]. There is widespread evidence
that meta-plasticity is a fundamental property of synapses in the brain [15].

Experimental tests of the assumptions of the BCM theory have repeatedly demonstrated that
the threshold for LTP induction in slices of visual cortex ex vivo varies according to the history
of prior sensory experience in vivo [16-18]. If rats or mice are kept in the dark for a few days,
LTP can be induced with a lower stimulation frequency than if they are kept in the light.
Conversely, re-exposure of deprived animals to light raises the LTP threshold in just a few
hours (Figure 1B).

Since LTP [2] and open-eye potentiation [8-10] require activation of postsynaptic NMDARs,
there has been interest in the hypothesis that activity-dependent changes in NMDAR-mediated
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synaptic transmission are important mechanisms for metaplasticity in visual cortex. In support
of this idea, the reduction in the LTP threshold caused in visual cortex by total light deprivation
can be reversed acutely with low concentrations of a competitive NMDAR antagonist [17].

While there are many ways to modulate NMDAR effectiveness, one appealing mechanism is
the activity-dependent regulation of NMDAR structure and function. NMDARs consist of the
obligatory NR1 subunit in combination with NR2A-D and NR3A-B subunits [19]. NR2A and
NR2B subunits, which predominate in postnatal cortex [20-22], exhibit several important
differences that can influence NMDAR-mediated plasticity. First, NR2B-containing NMDARs
have longer current durations than NR2A-containing receptors, due to a higher affinity for
glutamate and slower rates of desensitization [23-26]. Second, NR2B-containing NMDARs
carry more calcium charge per unit of current than NR2A subtypes [27]. Third, NR2A and
NR2B subunits have distinct intracellular binding partners [28-34].

Biochemical experiments demonstrate that NR2B-containing NMDARs predominate in light-
deprived visual cortex, whereas NR2A-containing NMDARs predominate in visual cortex
following light exposure [35,36]. NMDAR current durations reflect the changes in NMDAR
subunit composition, such that the current durations are longer in animals that have been light
deprived than in animals that are light-reared [18,37]. It has therefore been hypothesized that
the LTP threshold is raised by increases, and lowered by decreases, in the NR2A:NR2B ratio
[38]. In strong support of this hypothesis, genetic deletion of NR2A abrogates the effects of
visual deprivation on NMDAR currents and prevents metaplasticity of LTP in visual cortex
[18]. Recent work suggests that this mechanism for metaplasticity also generalizes to
hippocampal as well as cortical synapses [39].

Open-eye potentiation in vivo occurs 3–7 days after the onset of MD in juvenile mice [7].
Biochemical experiments were therefore conducted to determine if changes in NR2A and/or
NR2B expression occur in this time window. These studies reveal an increase in neuronal
surface expression of NR2B following 3 days of MD, and a subsequent decrease in NR2A
expression after 7 days of MD. Taken together, the data suggest a hypothesis that the reduction
in overall cortical activity caused by MD leads to a gradual decrease in the NR2A:NR2B ratio
that lowers the LTP threshold, and that this change is permissive for open-eye potentiation.

In order to test the idea that the lowered threshold for LTP caused by reduction of the
NR2A:NR2B ratio enables open-eye potentiation in vivo, we studied the effect of NR2A gene
dosage on the response of visual cortex to 3 days of MD. In both NR2A-knockouts (KOs)and
heterozygotes (in which expression of NR1 and NR2B is unchanged), we observed a precocious
increase in open-eye responses and reduced depression of deprived-eye synapses following
MD [9]. These findings strongly support the hypothesis that the NR2A:NR2B ratio specifies
the value of the synaptic modification threshold that controls the bidirectional cortical response
to MD.

A number of questions remain to be answered. First, we do not understand how activity
regulates NMDAR-subunit composition. An appealing idea is that transcription of NR2A is
proportional to the average activity of the neuron. When activity falls, so would the availability
of NR2A mRNA. Such a mechanism could account for the slow reduction in the LTP threshold,
since the modified NMDAR-subunit composition would manifest only as fast as the rate of
receptor turnover.

An additional mechanism is suggested by experiments performed on cultured cortical neurons.
When signaling through NR2B-containing NMDARs is inhibited (by treatment with
tetrodotoxin, 2-amino-5-phosphonovalerate, or ifenprodil), there is a selective increase in
NR2B protein expression within 24 h. This increase in NR2B requires mRNA translation, but
not transcription [40]. These findings suggest an interesting model in which signaling through
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NR2B normally suppresses the synthesis of NR2B protein. Relief from this suppression caused
by deprivation leads to a rapid increase in expression of this subunit and a corresponding
decrease in the NR2A:NR2B ratio of synaptic NMDARs.

Another puzzle concerns how changing the NR2A:NR2B ratio actually enables open-eye
potentiation. If the threshold was simply determined by the subunit ratio, then we would expect
that open-eye responses in the NR2A KO would have nowhere to go after MD – that is, if the
animal grows up with the threshold genetically fixed at a low value, why is there any role for
deprivation in triggering the additional increase in visual responsiveness? The data are better
described by a model in which the rate of threshold adjustment is constrained by the
NR2A:NR2B ratio, which of course is faster in the NR2A-mutant mice. However, this leaves
open the question of what the threshold actually is in biophysical or biochemical terms.

Finally, it is important to emphasize that although the evidence is now very strong that supports
that changes in the NR2A:NR2B ratio is a mechanism for metaplasticity and for regulating the
LTP threshold, this is almost certainly not the only mechanism. Some obvious additional
possibilities include changes in inhibitory tone, the number of NMDARs, postsynaptic calcium
ion buffering and diffusion, and calcium-dependent biochemical reactions. Indeed, recent
studies in vivo have demonstrated that dark exposure can shift the LTP threshold in visual
cortex within a few hours, which is faster than the NMDAR subunit changes observed so far
[41].

Conclusion
The possibility of additional mechanisms notwithstanding, available data strongly suggest that
lowering the NR2A:NR2B ratio provides a permissive milieu for strengthening weak cortical
inputs. An exciting possibility is that manipulation of this ratio, either experienti ally or
pharmacologically, could be exploited therapeutically to promote synaptic rewiring after
sensory deprivation, brain injury or disease.

Future perspective
It is now well established that the polarity and magnitude of activity-dependent synaptic
plasticity in the cerebral cortex varies as a function of the prior history of cortical activation.
Although most of the early experimental support was obtained in rodent model systems,
particularly the mouse visual cortex, the phenomenon of metaplasticity has now been
demonstrated in human subjects [42-44]. Metaplasticity appears to be a fundamental property
of cortical synapses and must be taken into account if we are to harness the therapeutic potential
of activity-dependent synaptic modifications [45].

The data reviewed in this article suggest that reducing the NR2A:NR2B ratio will promote the
synaptic changes that support recovery of function after deprivation. Support for this idea has
come from studies in visual cortex of adult rats that have undergone long-term MD. Normally,
opening the deprived eye in an adult will not lead to a substantial recovery of vision through
this eye [46]. This outcome is changed considerably if both eyes are deprived of vision 7 days
prior to eye opening [47]. The total light deprivation causes (among other things) a decrease
in the NR2A:NR2B ratio in visual cortex at the time of eye opening. It remains to be determined
whether the adjustment of NMDAR composition and function is responsible for the enhanced
recovery of function in these experiments. Regardless, these findings lend support to the
concept of a sliding modification threshold that can be lowered by a period of deprivation to
enhance subsequent synaptic potentiation in response to sensory experience. A regimen of total
deprivation followed by enhanced experience might be useful in clinical practice to p romote
recovery of function.
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Another approach that could have promise is to pharmacologically control signaling through
NMDARs. Genetic experiments suggest that NR2A has a ‘dominant negative’ influence on
synaptic potentiation in response to NMDAR activation and, conversely, that NR2B has a
negative influence on synaptic depression. An NR2A-selective NMDAR antagonist might
pheno copy the effects of reduced genetic expression of NR2A to promote synaptic
potentiation, with greater temporal control. Alternatively, drugs that promote signaling via
NR2B-containing NMDARs might have the same effect.

Executive summary

• Metaplasticity is an important phenomenon that describes how the activation
history of synapses modifies their potential reaction to subsequent experience.
Targeting the threshold that underlies metaplasticity may serve as a means to
promote synaptic potentiation in response to experience.

• Experience-dependent increases in NR2A, which change the NR2A:NR2B ratio
of NMDARs, normally raise the stimulation threshold that must be exceeded to
strengthen synaptic inputs.

• A reduction in NR2A results in a lowered threshold, which might serve as a
potential therapy for reversing effects of deprivation in adults.
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Figure 1. The Bienenstock–Cooper–Munro model
(A) The contribution of bidirectional synaptic modifications to ocular dominance plasticity in
visual cortex can be modeled by a learning rule where low levels of postsynaptic activation
induce LTD and high levels induce LTP [11]. This model suggests that the magnitude of the
postsynaptic response determines the modification of synaptic weight. The crossover from
LTD to LTP is termed the modification threshold (θm). Importantly, the value of θm is not
fixed; rather, it ‘slides’ as a function of the history of postsynaptic activation. The direction
the modification threshold slides is determined by the history of postsynaptic activity. (B)
Semischematic model for frequency-response function in light-reared (LR)-WT and dark-
reared (DR)-WT rats and mice. Experimental data points are plotted on a logarithmic scale and
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the LR/DR curves are extrapolated from previous studies. The Bienenstock–Cooper–Munro
model has been validated experimentally by the observations that LTP is enhanced and LTD
reduced in slices of visual cortex from light-deprived rats [16,17] and mice [18]. (C)
Experience-dependent regulation of NMDA-receptor subunit composition. The NMDA
receptor is a heteromer that contains an obligatory NR1 subunit and NR2 subunits that
determine receptor properties. Visual experience bidirectionally regulates the composition and
function of NMDA receptors in visual cortex. In the absence of visual experience, the NR2B
subunit is predominant. With the introduction of visual experience as brief as 2 h of light
exposure, the expression of NR2A-containing NMDA receptors increases. Conversely, placing
light-reared rats in the dark for 3–4 days causes the levels of NR2A to decrease, switching back
to an ‘immature state’ [35].
DR: Dark-reared; LR: Light-reared; LTD: Long-term depression; LTP: Long-term
potentiation; NMDA: N-methyl-D-aspartate; WT: Wild-type.
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