4,995 research outputs found

    Numerical study of a short-range p-spin glass model in three dimensions

    Full text link
    In this work we study numerically a short range p-spin glass model in three dimensions. The behaviour of the model appears to be remarkably different from mean field predictions. In fact it shares some features typical of models with full replica-symmetry breaking (FRSB). Nevertheless, we believe that the transition that we study is intrinsically different from the FRSB and basically due to non-perturbative contributions. We study both the statics and the dynamics of the system which seem to confirm our conjectures.Comment: 20 pages, 15 figure

    Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling

    Full text link
    The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a recently developed effective field theory. It is shown that there are logarithmic corrections to a previous calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a phase transition of undetermined nature in disordered interacting electron systems. This confirms a previous suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior of the conductivity, the tunneling density of states, and the phase and quasiparticle relaxation rates across the ferromagnetic transition is also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe

    Transport Anomalies and Marginal Fermi-Liquid Effects at a Quantum Critical Point

    Get PDF
    The conductivity and the tunneling density of states of disordered itinerant electrons in the vicinity of a ferromagnetic transition at low temperature are discussed. Critical fluctuations lead to nonanalytic frequency and temperature dependences that are distinct from the usual long-time tail effects in a disordered Fermi liquid. The crossover between these two types of behavior is proposed as an experimental check of recent theories of the quantum ferromagnetic critical behavior. In addition, the quasiparticle properties at criticality are shown to be those of a marginal Fermi liquid.Comment: 4pp., REVTeX, no figs, final version as publishe

    WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging

    Get PDF
    We have used methane imaging techniques to identify the near-infrared counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper motion of this source (around 3.0arcsec/yr) has moved it, since its original WISE identification, very close to a much brighter background star -- it currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446. Observations in good seeing conditions using methane sensitive filters in the near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade telescope, however, have enabled us to detect a near-infrared counterpart. We have defined a photometric system for use with the FourStar J2 and J3 filters, and this photometry indicates strong methane absorption, which unequivocally identifies it as the source of the WISE flux. Using these imaging observations we were then able to steer this object down the slit of the FIRE spectrograph on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming a Y0-Y0.5 spectral type. This is in line with the object's near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y dwarf in the WISE W2 passband and its distance measurement places it amongst the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September 201

    Entropic Origin of the Growth of Relaxation Times in Simple Glassy Liquids

    Get PDF
    Transitions between ``glassy'' local minima of a model free-energy functional for a dense hard-sphere system are studied numerically using a ``microcanonical'' Monte Carlo method that enables us to obtain the transition probability as a function of the free energy and the Monte Carlo ``time''. The growth of the height of the effective free energy barrier with density is found to be consistent with a Vogel-Fulcher law. The dependence of the transition probability on time indicates that this growth is primarily due to entropic effects arising from the difficulty of finding low-free-energy saddle points connecting glassy minima.Comment: Four pages, plus three postscript figure

    An Energetic AGN Outburst Powered by a Rapidly Spinning Supermassive Black Hole or an Accreting Ultramassive Black Hole

    Full text link
    Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and star formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxy's unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.Comment: Accepted for publication in ApJ. Modifications: adopted slightly higher black hole mass using Lauer's M_SMBH vs L_bulge relation and adjusted related quantities; considered more seriously the consequences of a ultramassive black hole, motivated by new Kormendy & Bender paper published after our submission; other modifications per referee comments by Ruszkowsk

    Discovery of an M9.5 Candidate Brown Dwarf in the TW Hydrae Association - DENIS J124514.1-442907

    Get PDF
    We report the discovery of a fifth candidate substellar system in the ~5-10 Myr TW Hydrae Association - DENIS J124514.1-442907. This object has a NIR spectrum remarkably similar to that of 2MASS J1139511-315921, a known TW Hydrae brown dwarf, with low surface gravity features such as a triangular-shaped H-band, deep H2O absorption, weak alkali lines, and weak hydride bands. We find an optical spectral type of M9.5 and estimate a mass of <24 M_Jup, assuming an age of ~5-10 Myr. While the measured proper motion for DENIS J124514.1-442907 is inconclusive as a test for membership, its position in the sky is coincident with the TW Hydrae Association. A more accurate proper motion measurement, higher resolution spectroscopy for radial velocity, and a parallax measurement are needed to derive the true space motion and to confirm its membership.Comment: 8 pages - emulateapj style, 2 figures, 3 tables. Accepted to ApJL. Fixed typos, added reference, added footnot

    Split transition in ferromagnetic superconductors

    Full text link
    The split superconducting transition of up-spin and down-spin electrons on the background of ferromagnetism is studied within the framework of a recent model that describes the coexistence of ferromagnetism and superconductivity induced by magnetic fluctuations. It is shown that one generically expects the two transitions to be close to one another. This conclusion is discussed in relation to experimental results on URhGe. It is also shown that the magnetic Goldstone modes acquire an interesting structure in the superconducting phase, which can be used as an experimental tool to probe the origin of the superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig
    • …
    corecore