7,182 research outputs found

    An exactly solvable toy model that mimics the mode coupling theory of supercooled liquid and glass transition

    Full text link
    A toy model is proposed which incorporates the reversible mode coupling mechanism responsible for ergodic-nonergodic transition with trivial Hamiltonian in the mode coupling theory (MCT) of structural glass transition. The model can be analyzed without relying on uncontrolled approximations inevitable in the current MCT. The strength of hopping processes can be easily tuned and the ideal glass transition is reproduced only in a certain range of the strength. On the basis of the analyses of our model we discuss about a sharp ergodic-nonergodic transition and its smearing out by "hopping".Comment: 5 pages, 2 ps-figures, inappropriate terms replace

    Anderson-Mott Transition in a Magnetic Field: Corrections to Scaling

    Full text link
    It is shown that the Anderson-Mott metal-insulator transition of paramagnetic, interacting disordered electrons in an external magnetic field is in the same universality class as the transition from a ferromagnetic metal to a ferromagnetic insulator discussed recently. As a consequence, large corrections to scaling exist in the magnetic-field universality class, which have been neglected in previous theoretical descriptions. The nature and consequences of these corrections to scaling are discussed.Comment: 5pp., REVTeX, no figs, final version as publishe

    Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling

    Full text link
    The quantum critical behavior of disordered itinerant ferromagnets is determined exactly by solving a recently developed effective field theory. It is shown that there are logarithmic corrections to a previous calculation of the critical behavior, and that the exact critical behavior coincides with that found earlier for a phase transition of undetermined nature in disordered interacting electron systems. This confirms a previous suggestion that the unspecified transition should be identified with the ferromagnetic transition. The behavior of the conductivity, the tunneling density of states, and the phase and quasiparticle relaxation rates across the ferromagnetic transition is also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe

    The Collapse of the Wien Tail in the Coldest Brown Dwarf? Hubble Space Telescope Near-Infrared Photometry of WISE J085510.83-071442.5

    Get PDF
    We present Hubble Space Telescope (HST) near-infrared photometry of the coldest known brown dwarf, WISE J085510.83-071442.5 (WISE 0855-0714). WISE 0855-0714 was observed with the Wide Field Camera 3 (WFC3) aboard HST using the F105W, F125W, and F160W filters, which approximate the YY, JJ, and HH near-infrared bands. WISE 0855-0714 is undetected at F105W with a corresponding 2σ\sigma magnitude limit of \sim26.9. We marginally detect WISE 0855-0714 in the F125W images (S/N \sim4), with a measured magnitude of 26.41 ±\pm 0.27, more than a magnitude fainter than the JJ-band magnitude reported by Faherty and coworkers. WISE J0855-0714 is clearly detected in the F160W band, with a magnitude of 23.90 ±\pm 0.02, the first secure detection of WISE 0855-0714 in the near-infrared. Based on these data, we find that WISE 0855-0714 has extremely red F105W-F125W and F125W-F160W colors relative to other known Y dwarfs. We find that when compared to the models of Saumon et al. and Morley et al., the F105W-F125W and F125W-F160W colors of WISE 0855-0714 cannot be accounted for simultaneously. These colors likely indicate that we are seeing the collapse of flux on the Wien tail for this extremely cold object.Comment: Accepted for publication in ApJ Letter

    Transport Anomalies and Marginal Fermi-Liquid Effects at a Quantum Critical Point

    Get PDF
    The conductivity and the tunneling density of states of disordered itinerant electrons in the vicinity of a ferromagnetic transition at low temperature are discussed. Critical fluctuations lead to nonanalytic frequency and temperature dependences that are distinct from the usual long-time tail effects in a disordered Fermi liquid. The crossover between these two types of behavior is proposed as an experimental check of recent theories of the quantum ferromagnetic critical behavior. In addition, the quasiparticle properties at criticality are shown to be those of a marginal Fermi liquid.Comment: 4pp., REVTeX, no figs, final version as publishe

    Numerical study of a short-range p-spin glass model in three dimensions

    Full text link
    In this work we study numerically a short range p-spin glass model in three dimensions. The behaviour of the model appears to be remarkably different from mean field predictions. In fact it shares some features typical of models with full replica-symmetry breaking (FRSB). Nevertheless, we believe that the transition that we study is intrinsically different from the FRSB and basically due to non-perturbative contributions. We study both the statics and the dynamics of the system which seem to confirm our conjectures.Comment: 20 pages, 15 figure

    Advances in large-diameter liquid encapsulated Czochralski GaAs

    Get PDF
    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates

    High purity low dislocation GaAs single crystals

    Get PDF
    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm

    Phase diagram of glassy systems in an external field

    Full text link
    We study the mean-field phase diagram of glassy systems in a field pointing in the direction of a metastable state. We find competition among a ``magnetized'' and a ``disordered'' phase, that are separated by a coexistence line as in ordinary first order phase transitions. The coexistence line terminates in a critical point, which in principle can be observed in numerical simulations of glassy models.Comment: 4 pages, 5 figure
    corecore