178 research outputs found

    PIKES Analysis Reveals Response to Degraders and Key Regulatory Mechanisms of the CRL4 Network

    Get PDF
    Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development

    J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using Nirspec on Keck II

    Get PDF
    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L-dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T-dwarf. These new observations were obtained during commissioning of NIRSPEC, the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10-meter telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R=2500 from 1.135 to 1.360 microns (approximately J-band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K I), and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen and the K I lines gradually become weaker but wider due to pressure broadening. An unidentified feature occurs at 1.22 microns which has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 magnitudes brighter in the near-infrared compared to the I-band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L-dwarf discovered so far by the 2-Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl229B or SDSS 1624+0029.Comment: New paper, Latex format, 2 figures, accepted to ApJ Letter

    A Novel Peptide-Based SILAC Method to Identify the Posttranslational Modifications Provides Evidence for Unconventional Ubiquitination in the ER-Associated Degradation Pathway

    Get PDF
    The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for disposing misfolded proteins from the endoplasmic reticulum by inducing their ubiquitination and degradation. Ubiquitination is conventionally observed on lysine residues and has been demonstrated on cysteine residues and protein N-termini. Ubiquitination is fundamental to the ERAD process; however, a mutant T-cell receptor α (TCRα) lacking lysine residues is targeted for the degradation by the ERAD pathway. We have shown that ubiquitination of lysine-less TCRα occurs on internal, non-lysine residues and that the same E3 ligase conjugates ubiquitin to TCRα in the presence or absence of lysine residues. Mass-spectrometry indicates that WT-TCRα is ubiquitinated on multiple lysine residues. Recent publications have provided indirect evidence that serine and threonine residues may be modified by ubiquitin. Using a novel peptide-based stable isotope labeling in cell culture (SILAC) approach, we show that specific lysine-less TCRα peptides become modified. In this study, we demonstrate that it is possible to detect both ester and thioester based ubiquitination events, although the exact linkage on lysine-less TCRα remains elusive. These findings demonstrate that SILAC can be used as a tool to identify modified peptides, even those with novel modifications that may not be detected using conventional proteomic work flows or informatics algorithms

    Ubiquitin Chains Are Remodeled at the Proteasome by Opposing Ubiquitin Ligase and Deubiquitinating Activities

    Get PDF
    SummaryThe ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation

    A Simple Likelihood Method for Quasar Target Selection

    Full text link
    We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g=22. The efficiency and completeness of this technique is measured using the Baryon Oscillation Spectroscopic Survey (BOSS) data, taken in 2010. This technique was used for the uniformly selected (CORE) sample of targets in BOSS year one spectroscopy to be realized in the 9th SDSS data release. When targeting at a density of 40 objects per sq-deg (the BOSS quasar targeting density) the efficiency of this technique in recovering z>2.2 quasars is 40%. The completeness compared to all quasars identified in BOSS data is 65%. This paper also describes possible extensions and improvements for this techniqueComment: Updated to accepted version for publication in the Astrophysical Journal. 10 pages, 10 figures, 3 table

    Think Outside the Color Box: Probabilistic Target Selection and the SDSS-XDQSO Quasar Targeting Catalog

    Full text link
    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 <~ z <~ 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg^2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available

    Confluence and Convergence in Probabilistically Terminating Reduction Systems

    Get PDF
    Convergence of an abstract reduction system (ARS) is the property that any derivation from an initial state will end in the same final state, a.k.a. normal form. We generalize this for probabilistic ARS as almost-sure convergence, meaning that the normal form is reached with probability one, even if diverging derivations may exist. We show and exemplify properties that can be used for proving almost-sure convergence of probabilistic ARS, generalizing known results from ARS.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Extended ubiquitin species are protein-based DUB inhibitors

    Get PDF
    A frame-shift mutation in the transcript of the ubiquitin-B gene leads to a C-terminally extended ubiquitin, UBB+1. UBB+1 has been considered to inhibit proteasomes, and as such to be the underlying cause for toxic protein buildup correlated with certain neuropathological conditions. We demonstrated that expression of extended ubiquitin variants led to accumulation of heterogeneously-linked polyubiquitin conjugates indicating a pervasive effect on ubiquitin-dependent turnover. 20S proteasomes selectively proteolysed ubiquitin extensions, yet no evidence for inhibition of 26S holoenzymes was found. However, among susceptible targets for inhibition was Ubp6, the primary enzyme responsible for disassembly of lysine-48 linkages at 26S proteasomes. Processing of lysine-48 and lysine-63 linkages by other deubiquitinating enzymes (DUBs) was also inhibited. Disruption of ubiquitin-dependent degradation by extended ubiquitin variants may therefore be attributed to their inhibitory effect on select DUBs, thus shifting research efforts related to protein accumulation in neurodegenerative processes from proteasomes to DUBs
    • 

    corecore