15 research outputs found
Cross-linked amylose bio-plastic: A transgenic-based compostable plastic alternative
Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material
Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.A.P.G.C. and P.R.F. acknowledge the funding from Fundação para a Ciência e Tecnologia (Portugal), through IDMEC, under LAETA project UIDB/50022/2020. T.H.V.P. acknowledges the funding from Fundação para a Ciência e Tecnologia (Portugal), through Ph.D. Grant 2020.04417.BD. A.S. acknowledges that this work was partially supported by the ATTRACT Investigator Grant (no. A17/MS/11572821/MBRACE, to A.S.) from the Luxembourg National Research Fund. The author thanks Gerardo Ceada for his help in the graphical representations. N.A.K. acknowledges support from the European Research Council (grant 851960) and the Gravitation Program “Materials Driven Regeneration,” funded by the Netherlands Organization for Scientific Research (024.003.013). M.B.A. acknowledges support from the French National Research Agency (grant ANR-201-8-CE1-3-0008 for the project “Epimorph”). G.E.S.T. acknowledges funding by the Australian Research Council through project DP200102593. A.C. acknowledges the funding from the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether Grant CI 203/-2 1, the Spanish Ministry of Science and Innovation (PID2021-123013O-BI00) and the IKERBASQUE Basque Foundation for Science.Peer reviewe
The Tricontinuous 3<i>ths</i>(5) Phase: A New Morphology in Copolymer Melts
Self-assembly remains the most efficient
route to the formation
of ordered nanostructures, including the double gyroid network phase
in diblock copolymers based on two intergrown network domains. Here
we use self-consistent field theory to show that a tricontinuous structure
with monoclinic symmetry, called 3<i>ths</i>(5), based on
the intergrowth of three distorted <i>ths</i> nets, is an
equilibrium phase of triblock star-copolymer melts when an extended
molecular core is introduced. The introduction of the core enhances
the role of chain stretching by enforcing larger structural length
scales, thus destabilizing the hexagonal columnar phase in favor of
morphologies with less packing frustration. This study further demonstrates
that the introduction of molecular cores is a general concept for
tuning the relative importance of entropic and enthalpic free energy
contributions, hence providing a tool to stabilize an extended repertoire
of self-assembled nanostructured materials
Vpliv učenja in obsega žoge na spremembo hitrosti rokometnega strela
Thioredoxin, involved in numerous
redox pathways, is maintained
in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent
flavoprotein thioredoxin reductase (TrxR). Here, TrxR from <i>Lactococcus lactis</i> is compared with the well-characterized
TrxR from <i>Escherichia coli</i>. The two enzymes belong
to the same class of low-molecular weight thioredoxin reductases and
display similar <i>k</i><sub>cat</sub> values (∼25
s<sup>–1</sup>) with their cognate thioredoxin. Remarkably,
however, the <i>L. lactis</i> enzyme is inactivated by visible
light and furthermore reduces molecular oxygen 10 times faster than <i>E. coli</i> TrxR. The rate of light inactivation under standardized
conditions (λ<sub>max</sub> = 460 nm and 4 °C) was reduced
at lowered oxygen concentrations and in the presence of iodide. Inactivation
was accompanied by a distinct spectral shift of the flavin adenine
dinucleotide (FAD) that remained firmly bound. High-resolution mass
spectrometric analysis of heat-extracted FAD from light-damaged TrxR
revealed a mass increment of 13.979 Da, relative to that of unmodified
FAD, corresponding to the addition of one oxygen atom and the loss
of two hydrogen atoms. Tandem mass spectrometry confined the increase
in mass of the isoalloxazine ring, and the extracted modified cofactor
reacted with dinitrophenyl hydrazine, indicating the presence of an
aldehyde. We hypothesize that a methyl group of FAD is oxidized to
a formyl group. The significance of this not previously reported oxidation
and the exceptionally high rate of oxygen reduction are discussed
in relation to other flavin modifications and the possible occurrence
of enzymes with similar properties