76 research outputs found

    In Vivo Flow Dynamics of the Total Cavopulmonary Connection from Three-dimensional Multislice Magnetic Resonance Imaging

    Get PDF
    Background. The total cavopulmonary connection (TCPC) design continues to be refined on the basis of flow analysis at the connection site. These refinements are of importance for myocardial energy conservation in the univentricular supported circulation. In vivo magnetic resonance phase contrast imaging provides semiquantitative flow visualization information. The purpose of this study was to understand the in vivo TCPC flow characteristics obtained by magnetic resonance phase contrast imaging and compare the results with our previous in vitro TCPC flow experiments in an effort to further refine TCPC surgical design. Methods. Twelve patients with TCPC underwent sedated three-dimensional, multislice magnetic resonance phase contrast imaging. Seven patients had intraatrial lateral tunnel TCPC and 5 had extracardiac TCPC. Results. In all patients in both groups a disordered flow pattern was observed in the inferior caval portion of the TCPC. Flow at the TCPC site appeared to be determined by connection geometry, being streamlined at the superior vena cava–pulmonary junction when the superior vena cava was offset and flared toward the left pulmonary artery. Without caval offset, intense swirling and dominance of superior vena caval flow was observed. In TCPC with bilateral superior vena cavae, the flow patterns observed included secondary vortices, a central stagnation point, and influx of the superior vena cava flow into the inferior caval conduit. A comparative analysis of in vivo flow and our previous in vitro flow data from glass model prototypes of TCPC demonstrated significant similarities in flow disturbances. Three-dimensional magnetic resonance phase contrast imaging in multiple coronal planes enabled a comprehensive semiquantitative flow analysis. The data are presented in traditional instantaneous images and in animated format for interactive display of the flow dynamics. Conclusions. Flow in the inferior caval portion of the TCPC is disordered, and the TCPC geometry determines flow characteristics

    In Vivo Flow Dynamics of the Total Cavopulmonary Connection from Three-dimensional Multislice Magnetic Resonance Imaging

    Get PDF
    Background. The total cavopulmonary connection (TCPC) design continues to be refined on the basis of flow analysis at the connection site. These refinements are of importance for myocardial energy conservation in the univentricular supported circulation. In vivo magnetic resonance phase contrast imaging provides semiquantitative flow visualization information. The purpose of this study was to understand the in vivo TCPC flow characteristics obtained by magnetic resonance phase contrast imaging and compare the results with our previous in vitro TCPC flow experiments in an effort to further refine TCPC surgical design. Methods. Twelve patients with TCPC underwent sedated three-dimensional, multislice magnetic resonance phase contrast imaging. Seven patients had intraatrial lateral tunnel TCPC and 5 had extracardiac TCPC. Results. In all patients in both groups a disordered flow pattern was observed in the inferior caval portion of the TCPC. Flow at the TCPC site appeared to be determined by connection geometry, being streamlined at the superior vena cava–pulmonary junction when the superior vena cava was offset and flared toward the left pulmonary artery. Without caval offset, intense swirling and dominance of superior vena caval flow was observed. In TCPC with bilateral superior vena cavae, the flow patterns observed included secondary vortices, a central stagnation point, and influx of the superior vena cava flow into the inferior caval conduit. A comparative analysis of in vivo flow and our previous in vitro flow data from glass model prototypes of TCPC demonstrated significant similarities in flow disturbances. Three-dimensional magnetic resonance phase contrast imaging in multiple coronal planes enabled a comprehensive semiquantitative flow analysis. The data are presented in traditional instantaneous images and in animated format for interactive display of the flow dynamics. Conclusions. Flow in the inferior caval portion of the TCPC is disordered, and the TCPC geometry determines flow characteristics

    Correction of Pulmonary Arteriovenous Malformation Using Image-Based Surgical Planning

    Get PDF
    The objectives of this study were to develop an image-based surgical planning framework that 1) allows for in-depth analysis of pre-operative hemodynamics by the use of cardiac magnetic resonance and 2) enables surgeons to determine the optimum surgical scenarios before the operation. This framework is tailored for applications in which post-operative hemodynamics are important. In particular, it is exemplified here for a Fontan patient with severe left pulmonary arteriovenous malformations due to abnormal hepatic flow distribution to the lungs. Patients first undergo cardiac magnetic resonance for 3-dimensional anatomy and flow reconstruction. After analysis of the pre-operative flow fields, the 3-dimensional anatomy is imported into an interactive surgical planning interface for the surgeon to virtually perform multiple surgical scenarios. Associated hemodynamics are predicted by the use of a fully validated computational fluid dynamic solver. Finally, efficiency metrics (e.g., pressure decrease and hepatic flow distribution) are weighted against surgical feasibility to determine the optimal surgical option

    DataPerf: Benchmarks for Data-Centric AI Development

    Full text link
    Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.Comment: NeurIPS 2023 Datasets and Benchmarks Trac

    Alternative Techniques for the Fontan Operation

    Get PDF

    The Yasui Operation

    No full text

    Surgem: Next Generation CAD Tools for Interactive Patient-Specific Surgical Planning and Hemodynamic Analysis

    Get PDF
    The first version of an anatomy editing/surgical planning tool targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel shape editing concepts and human-shape interaction (HSI) technologies have been combined to facilitate interactive shape alterations and grid generation. At a surgery planning phase, these tools are applied to design and evaluate possible modifications of patient-specific anatomies of congenital heart defects involving complex geometric topologies and tortuous three-dimensional blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the three-dimensional (3D) models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomy are seamlessly exported and meshed for CFD analysis. The combined design/analysis cycle is used for comparing and optimizing surgical plans. By reducing the cost of scale patient-specific shape design and analysis, these tools make it possible to envision large clinical studies for validating the predictive value of CFD simulations in surgery planning
    • …
    corecore