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orrection of Pulmonary Arteriovenous
alformation Using Image-Based

urgical Planning
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he objectives of this study were to develop an image-based surgical planning framework that 1) allows for

n-depth analysis of pre-operative hemodynamics by the use of cardiac magnetic resonance and 2) enables

urgeons to determine the optimum surgical scenarios before the operation. This framework is tailored for

pplications in which post-operative hemodynamics are important. In particular, it is exemplified here for

Fontan patient with severe left pulmonary arteriovenous malformations due to abnormal hepatic flow

istribution to the lungs. Patients first undergo cardiac magnetic resonance for 3-dimensional anatomy

nd flow reconstruction. After analysis of the pre-operative flow fields, the 3-dimensional anatomy is

mported into an interactive surgical planning interface for the surgeon to virtually perform multiple

urgical scenarios. Associated hemodynamics are predicted by the use of a fully validated computational

uid dynamic solver. Finally, efficiency metrics (e.g., pressure decrease and hepatic flow distribution) are

eighted against surgical feasibility to determine the optimal surgical option. (J Am Coll Cardiol Img

009;2:1024 –30) © 2009 by the American College of Cardiology Foundation
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entricle congenital heart defects. Over the
ears this procedure has evolved and in current
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irculation has been widely reported (1). The pri-
ary consequence of PAVMS is increasing cyanosis

nd decreased oxygen saturation.
Although the underlying mechanism leading to

AVMS is unknown, studies have shown that liver-
erived factors present in the hepatic venous blood
revent their formation (1). Therefore, any abnormal-
ties in hepatic flow distribution (HFD) in a TCPC
ould potentially lead to PAVMS. In addition, the
ntrapulmonary shunts lead to a decrease in pulmonary
ascular resistance, which tends to direct more flow to
he diseased lung, creating a positive feedback loop of
ncreasing cyanosis. Once the oxygen saturation de-
reases below a certain level, the only palliative option
s to reoperate and reorient the TCPC such that a
etter HFD is achieved (1).

One single-ventricle subgroup that is especially at
isk for PAVMs is children who have an interrupted
VC with an azygous vein continuation (i.e., Ka-
ashima procedure) (1). In such cases, the azygous
ein tends to carry a majority of the IVC flow, whereas
he hepatic flow is directed to the pulmonary system
ia an extracardiac or lateral tunnel. Although several
alliative options have been discussed in the literature,
here is no “exact” geometric solution for a specific
atient when PAVMs develop. The inherent chal-
enges associated with visualizing HFD pre-
peratively based on geometry alone make it diffi-
ult to identify the option that will distribute
epatic flow “equally” to both lungs.
The 2 objectives for the case study described in

his article are as follows: 1) to propose new
ethodologies for noninvasively quantifying HFD
ith cardiac magnetic resonance (CMR); and 2) to
etermine the optimal TCPC reorientation that will
esult in equal distribution of the hepatic flow to both
he lungs. These objectives are based on the hypoth-
ses that decreased hepatic flow perfusion to the lungs
auses PAVMs, whereas improving the hepatic flow
istribution results in PAVM regression, both of
hich are strongly supported by earlier clinical studies

1). New approaches are presented to accomplish the
aforementioned objectives using phase-contrast car-
iac magnetic resonance (PC CMR) and computa-
ional fluid dynamics (CFD).

tep-by-Step Methodology

he pillars of the proposed CMR-based diagnosis
nd surgical planning framework include the fol-
owing: 1) CMR acquisition; 2) volume rendering
f the in vivo anatomy and flow; 3) virtual surgery;
) CFD modeling; and 5) quantification of HFD

nd/or other clinically relevant parameters as a feed- o
ack to the surgeon. For the clarity of our subsequent
escriptions, methods and protocols are exposed in
heir clinical context, taking the example of a Fontan
atient suffering from severe hypoxemia.
atient characteristics. All parameters and results in-
luded in this study pertain to a 4-year-old female
ontan patient who presented to the Children’s Hos-
ital of Philadelphia with an oxygen saturation of 72%
n the ascending aorta. The patient had complex
eterotaxy syndrome, single-ventricle, dextrocardia,
otal anomalous pulmonary venous connection to the
ight atrium, and an interrupted IVC with azygous
ein continuation. She had undergone a Kawashima
rocedure during stage 2, followed by an extracardiac
onnection of the hepatic vein during stage 3. Dye
njection X-ray angiography revealed the formation of
evere left lung PAVMs, responsible for the observed
ypoxemia.
he CMR protocol. Three sets of images are
equired for the pre-operative diagnosis and
urgical planning operation (see Fig. 1 and
able 1 for typical acquisition settings): 1) a

ull volume dataset of the entire thorax to
econstruct the TCPC geometry; 2) retro-
pectively gated, through-plane phase-
ncoded velocity maps at the vessel cross-
ections of the superior vena cava, IVC, left
ulmonary artery (LPA), right pulmonary
rtery (RPA), and the azygous vein for CFD
oundary conditions; and 3) a stack of ret-
ospectively gated 3-dimensional (3D) PC
MR slices in an off-axis coronal view for

econstructing the entire blood flow field
ithin the TCPC.
D rendering of pre-operative anatomy and
ow. A 3D model of the patient anatomy
s generated by the use of a methodology previously
eveloped and validated in our laboratory (Fig. 2)
2). Four-dimensional (3D space � time) velocity
elds are reconstructed inside the TCPC from the
C CMRs by the use of a novel divergence-free

nterpolation technique. The reconstructed 3D flow
elds (Fig. 3) then make it possible to evaluate the
re-operative HFD, identify the lung susceptible to
AVMs, and guide possible reoperation scenarios.
Here, a highly uneven HFD is evident with 93 �

% of hepatic flow going towards the right lung.
loser examination of the flow structures reveals that,
ecause of lower velocities and associated kinetic
nergy, the hepatic flow cannot sustain the flow
ompetition at the center of the connection and is
orced by the azygous flow into the RPA. Possible

A B B

A N D

3D �

CFD �

dynam

CMR �

reson

HFD �
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arterio
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conne
ptions may thus seek to either increase the amo
R E V I A T I O N S

A C R O N YM S

3-dimensional

computational fluid
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cardiac magnetic
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hepatic flow distribution
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right pulmonary artery

� total cavopulmonary
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enous return through the IVC or avoid the head-on
ow collision at the center.
irtual surgery. To perform virtual TCPC surgery
ith ease, geometrical morphing concepts were

pplied to develop a robust virtual-surgery interface
hat would allow surgeons to manipulate a
omputer-representation of the patient’s anatomy
3). Performance of a virtual surgery within that
nterface is illustrated in Figure 4, taking the 3D

Figure 1. CMR Protocol

Cardiac magnetic resonance (CMR) protocol for reconstructing 3-dim
putational fluid dynamics; FISP � fast imaging with steady-state pr
PC CMR � phase-contrast cardiac magnetic resonance; RPA � right

tion Parameters in a Siemens (New York, New York) 1.5-T Avanto

Acquisition Type
TR/T
(ms/m

ction Stack of static true-FISP in the axial direction 174/1

ns PC CMR cross sections 57.5/3

Stack of PC CMR in the coronal direction 66.45/4

� computational fluid dynamics; CMR � cardiac magnetic resonance; FISP � fast

e; TR � repetition time.
econstruction of the failing TCPC geometry and
ielding 3 different options for surgical palliation.
he TCPC and direct surrounding organs (includ-

ng the heart and great vessels) are included within
he interface for the surgeon to visualize his/her true
egree of freedom.
low modeling. The CFD simulations are con-
ucted on all envisioned options to investigate the
ssociated HFD, energy losses, and/or any other

sional (3D) anatomic and flows. 4D � 4-dimensional; CFD � com-
sion; IVC � inferior vena cava; LPA � left pulmonary artery;
lmonary artery; SVC � superior vena cava.

anner

No. of
Slices

Pixel Sizes
(mm)

No. of
Phases

Slice Thickness
(mm)

45 0.9 1 3

5 1.4063 22 5

11 1.1979 22 5

ging with steady-state precession; PC CMR � phase-contrast cardiac magnetic
en
eces
Table 1. CMR Acquisi Sc

Imaging Purpose
E
s)

3D anatomy reconstru .22

CFD boundary conditio .93

3D flow reconstruction .68

3D � 3-dimensional; CFD ima
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Figure 2. 3-Dimensional Anatomic Reconstruction Process

The 3-dimensional anatomic reconstruction process is as follows: 1) The TCPC is segmented in each slice; 2) the segmented contours are
imported into Geomagic Studio 9.0 (Geomagic Inc., Research Triangle Park, North Carolina) in a point cloud format; and 3) a smooth sur-
face is fitted to the points. AV � azygous vein; HV � hepatic vein; IV � inominate vein; TCPC � total cavopulmonary connection; other

abbreviations as in Figure 1.
Figure 3. Pre-Operative Hemodynamics Evaluated With the Use of CMR and CFD

Comparison of the pre-operative hemodynamics obtained in vivo by the use of PC CMR and simulated using CFD (Online Videos 1 and
2). Abbreviations as in Figures 1 and 2.

http://jaccimage.cardiosource.com/vol2/issue8/0536_VID1-vol2iss8.avi
http://jaccimage.cardiosource.com/vol2/issue8/0536_VID2-vol2iss8.avi


s
s
s
m
a
s
o
e
s
p
i
A
a
e
d
p
p
F
a
L
g

R
s
I
m
c
a
t
p
o
h
T
a
a
7

D

D
d
b

al s

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 2 , N O . 8 , 2 0 0 9

A U G U S T 2 0 0 9 : 1 0 2 4 – 3 0

Sundareswaran et al.

Image-Based Surgical Planning

1028
urrogate measures of clinical performance. These
imulations are conducted using an in-house un-
tructured, sharp-interface immersed-boundary
ethod (4). Inflow/outflow boundary conditions

re prescribed using the mean flow rates and flow
plits computed from PC CMR. The accuracy of
ur CFD solver was established against in vitro
xperiments, and the validity of our modeling as-
umptions is demonstrated here by simulating the
re-operative flow fields and comparing them to the
n vivo PC CMR data (Fig. 3).
ssessment of the surgical planning options. The last
nd final step is to quantify the performance of all
nvisioned surgical options, allowing the surgeon to
ecide on the optimal one. Such analysis is exem-
lified in Figure 5, which compares HFD and
ressure drops in the 3 surgical options shown in
igure 4. Option 3 had the best performance from
n IVC distribution stand-point, achieving a 66/34
PA/RPA ratio, which was in close match with the

Figure 4. Steps for the Virtual Surgery and Subsequent CFD Stu

Shown are the steps involved in virtual surgery and 3-dimensional
tive anatomy; (B) virtual surgery environment; and (C) resulting visu
lobal cardiac output distribution of 70/30 LPA/ r
PA. Slightly greater pressure decreases were ob-
erved for this option (�0.52 mm Hg between the
VC and the center of the connection vs. ��0.2
m Hg with the other options), as a result of the

ombined IVC and azygous streams flowing up the
zygous vein and dissipating more energy via fric-
ion along the vessel walls. For that particular
atient, the surgeon favored HFD to correct the
bserved PAVMs and thus retained to drain the
epatics into the persistent azygous vein (Option 3).
he 5-month follow-up data support this choice with
clear improvement in the overall clinical condition

nd oxygen saturation levels that had increased from
2% to 94%, implying regression of the PAVMs.

iscussion and Conclusions

eficiency of hepatic effluents as a consequence of
ecreased hepatic flow has long been speculated to
e the direct cause of PAVMs, demonstrating the

s

etric reconstruction of different surgical scenarios. (A) Pre-opera-
urgery options. Abbreviations as in Figures 1 and 2.
die

geom
ole of the liver in regulating normal pulmonary
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unction (1). In Fontan patients, adequate HFD is
n great part controlled by the design of the TCPC.

owever, as the complexity of the underlying anat-
my increases, the amount of control that can be
xercised decreases. This phenomenon can be ob-
erved in Fontan patients having a Kawashima
rocedure performed in Stage 2, in whom the
ncidence of PAVMs can be as high as 21% (5).
eeping this observation in mind, this article pre-

ents 2 new approaches for managing Fontan pa-
ients with PAVMs: 1) a noninvasive technique for
uantifying hepatic flow splits with CMR; and
) an image-based surgical planning framework for
dentifying the geometry that achieves an optimal
epatic flow distribution to both the lungs.
Reconstruction of the 4-dimensional pre-operative

n vivo flow fields with the use of PC CMR measure-
ents appears as an attractive noninvasive method for

Figure 5. Hemodynamic Efficiency Across all Surgical Options

Comparison of global performance measures across all considered
cases, 70% of the total cardiac output exited through the LPA (Onli
AVM diagnosis. In the patient under study for s
xample, the reconstructed flow fields revealed that
he left lung received a majority of the cardiac output
70%) but very little of the hepatic blood (5%), both of
hich may be indicative of left lung PAVMs. Fur-

hermore, analysis of the detailed dynamic TCPC
ow structures provides insights into the underlying
auses for the unbalanced HFD, which may then
erve for a more rational TCPC design and planning
f the necessary reoperation.

The palliative strategy for correction of PAVMs
ypically involves a Fontan revision in which attempts
re made to redirect the hepatic effluent to the affected
ung. Clearly, the wide variety of patient anatomies

akes it difficult to design a general procedure that fits
ll patients, whereas the complexity of in vivo anato-
ies pose significant challenges to identify the surgical

ption that best distributes hepatic flow for a given
atient. The pre-operative anatomy shown in this

omies. All numbers are obtained from the CFD simulations. For all
ideo 3). Abbreviations as in Figures 1 and 2.
anat
ne V
tudy is a clear illustration of this difficulty: flaring the

http://jaccimage.cardiosource.com/vol2/issue8/0536_VID3-vol2iss8.avi
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xtra-cardiac conduit towards the LPA would have
uggested a favorable hepato-to-LPA flow distribu-
ion, but the impact of the azygous flow actually
esulted in the opposite behavior.

This work introduces a whole new paradigm for
ddressing this problem by the use of an image-
ased surgical planning approach that can be used
o optimize Fontan procedures on a patient specific
asis, which may prove beneficial and cost effective
o both the hospital and the patient in the long-
erm. Different virtual operation scenarios can be
nvestigated for each patient, allowing clinicians to
onduct a multifactorial risk/benefit analysis (bal-
ncing power losses against hepatic flow distribu-
ion and ease of completion, for example) and
hereby empowering them with the options to select
modynamic computational fluid dynam- rac Surg 1999;68:23
lthough the proposed framework was exemplified
n the context of Fontan failure and PAVMs
orrection, this approach can also be applied at
arlier stages to optimize second and third stages
nd prevent the formation of PAVMs.
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