14,436 research outputs found

    Triton: A hot potato

    Get PDF
    The effect of sunlight on the surface of Triton was studied. Widely disparate models of the active geysers observed during Voyager 2 flyby were proposed, with a solar energy source almost their only feature. Yet Triton derives more of its heat from internal sources (energy released by the radioactive decay) than any other icy satellite. The effect of this relatively large internal heat on the observable behavior of volatiles on Triton's surface is investigated. The following subject areas are covered: the Global Energy Budget; insulation polar caps; effect on frost stability; mantle convection; and cryovolcanism

    The role of nonuniform internal heating in Triton's energy budget

    Get PDF
    Triton's large heliocentric distance and high albedo, combined with its unusually large silicate mass fraction, make internal heating more important in its energy budget than in that of any other icy satellite. Brown et al. have recently estimated that the average radiogenic heat flux (which is probably between 3.3 and 6.6 mW/sq m depending on core size and composition) may equal 5 to 20 pct. of the average absorbed insolation. On a global scale, this additional energy input appreciably increases the thermal emissivity required to be consistent with the observed surface temperature. Brown et al. also speculated that spatial variations of the internal flux may change the local sublimation deposition balance enough to lead to observable modifications of the distribution of volatiles on Triton's surface. An attempt is made to estimate the magnitude of internal heat flux variations due to the insulating effect of the polar caps, to mantle convection, and to cryovolcanism; the importance is evaluated of these variations in modifying the volatile distribution

    Analysis and identification of subsynchronous vibration for a high pressure parallel flow centrifugal compressor

    Get PDF
    The summary of a complete analytical design evaluation of an existing parallel flow compressor is presented and a field vibration problem that manifested itself as a subsynchronous vibration that tracked at approximately 2/3 of compressor speed is reviewed. The comparison of predicted and observed peak response speeds, frequency spectrum content, and the performance of the bearing-seal systems are presented as the events of the field problem are reviewed. Conclusions and recommendations are made as to the degree of accuracy of the analytical techniques used to evaluate the compressor design

    Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal

    Full text link
    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST) have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in the pedestal and microtearing modes (MTMs) in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements include: shortened abstract, and better colour table for figures. 4 pages, 6 figure

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Particle acceleration at ultrarelativistic shocks: an eigenfunction method

    Get PDF
    We extend the eigenfunction method of computing the power-law spectrum of particles accelerated at a relativistic shock fronts to apply to shocks of arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo simulations, we find the index of the power-law distribution of accelerated particles which undergo isotropic diffusion in angle at an ultrarelativistic, unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant phase-space density and p the momentum). This corresponds to a synchrotron index for uncooled electrons of a=0.62 (taking cooling into account a=1.12), where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also present an approximate analytic expression for the angular distribution of accelerated particles, which displays the effect of particle trapping by the shock: compared with the non-relativistic case the angular distribution is weighted more towards the plane of the shock and away from its normal. We investigate the sensitivity of our results to the transport properties of the particles and the presence of a magnetic field. Shocks in which the ratio of Poynting to kinetic energy flux upstream is not small are less compressive and lead to larger values of ss.Comment: Minor additions on publicatio

    Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy

    Full text link
    The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as successful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimisation of instrument design and survey strategy in order to measure dark energy. We use color-color selection as well as neural networks to select the best possible emission line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism we forecast the efficiency of each target selection scenario. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201
    corecore