

Patent Number:

Date of Patent:

[11]

[45]

United States Patent [19]

Petrie et al.

[54] METHODS FOR TREATING BONE DEFICIT CONDITIONS WITH BENZOTHIAZOLE

- [75] Inventors: Charles Petrie, Woodinville; Mark W. Orme, Seattle; Nand Baindur, Edmonds; Kirk G. Robbins, Renton, all of Wash.; Laurence H. Hurley, Austin, Tex.; Sean M. Kerwin, Round Rock, Tex.; Gregory R. Mundy, San Antonio, Tex.
- [73] Assignees: Zymogenetics, Inc., Seattle, Wash.;
 OsteoScreen, Inc., San Antonio;
 University of Texas at Austin, Austin, both of Tex.
- [21] Appl. No.: 08/808,742
- [22] Filed: Feb. 28, 1997

Related U.S. Application Data

- [63] Continuation of application No. 08/735,881, Oct. 23, 1996, abandoned.
- [51] Int. Cl.⁶ A61K 31/38; A61K 31/385
- [52] U.S. Cl. 514/447; 514/430; 514/439;
 - 514/443

[56] **References Cited**

U.S. PATENT DOCUMENTS

5,280,040	1/1994	Labroo et al 514/422
5,441,964	8/1995	Bryant et al 514/324
5,523,309	6/1996	Bryant et al 514/320
5,622,974	4/1997	Muehl 514/320

FOREIGN PATENT DOCUMENTS

WO93/10113 A1 5/1993 WIPO . WO95/10513 A1 4/1995 WIPO .

OTHER PUBLICATIONS

Chem. abstr. vol. 127, abstract No. 127:17703, Petrie et al. Preparation of (hetero aromatic compounds for treating bone deficit conditions, WO–97/15308 (Eng.) (1997).

Chem. abstr. vol. 107, abst. No. 107:109578, Watts et al., Studies on the ligand specificity and potential identify of microsomal antiestrogen-binding sites, Mol. Pharmocol. 1987, 31(5), 541-51.

Chem abstr. vol. 108, abstract No. 108:69162, Jordan et al., Effects of antiestrogens on bone in castrated and intact female rats, Breast Cancer Res. Treat. 1987, 10(1), 31–5.

Chem. abstr. vol. 115, abstract No. 115:8533, Schwarz et al. 1,2–diphenyl–1–pyridybut–1–enes–potential antigestrogens. part 1. synthesis Arch. Pharm. 1991, 324(4), 223–9. Neelam et al. Structure–activity relationship of antiestrogens: A study using triarylbutenone, benzofuran and triayrlfuran analogues as models for triarylethylenes and triarylpropenones. J. Med. chem. 1989, vol. 32, pp. 1700–1707, see entire article.

5,922,753

Jul. 13, 1999

Von Angerer et al. Studies on heterocycle–based pure estrogen antagonists. Ann. N.Y. Academy Sciences. 1995, vol. 761, pp. 176–191, see especially pp. 178–180.

Mundy, G.R., "Cytokines and Growth Factors in the Regulation of Bone Remodeling," *Journal of Bone and Mineral Research* (1993) 8(2):S505–S510.

Mundy, G.R., "Regulation of Bone Formation by Bone Morphogenetic Proteins and Other Growth Factors," *Clinical Orthopaedics and Related Research* (1996) 324:24–28.

Harris, S.E., et al., "Effects of Transforming Growth Factor β on Bone Nodule Formation and Expression of Bone Morphogenetic Protein 2, Osteocalcin, Osteopontin, Alkaline Phosphatase, and Type I Collagen mRNA in Long–Term Cultures of Fetal Rat Calvarial Osteoblasts," *Journal of Bone and Mineral Research* (1994) 9(6):855–863.

Stein, G.S., et al., "Bone cell differentiation: a functionally coupled relationship between expression of cell–growth–and tissue–specific genes," *Current Opinion in Cell Biology* (1990) 2:1018–1027.

Urist, M.R., "Bone: Formation by Autoinduction," *Science* (1965) 150:893–899.

Wozney, J.M., et al., "Novel Regulators of Bone Formation: Molecular Clones and Activities," *Science* (1988) 242:1528–1534.

Wozney, J.M., "The Bone Morphogenetic Protein Family and Osteogenesis," *Molecular Reproduction and Development* (1992) 32:160–167.

Primary Examiner—Theodore J. Criares Attorney, Agent, or Firm—Morrison & Foerster LLP

[57] ABSTRACT

Compounds containing two aromatic systems covalently linked through a linker containing one or more atoms, or "linker" defined as including a covalent bond per se so as to space the aromatic systems at a distance 1.5-15 Å, are effective in treating conditions associated with bone deficits. The compounds can be administered to vertebrate subjects alone or in combination with additional agents that promote bone growth or that inhibit bone resorption. They can be screened for activity prior to administration by assessing their ability to effect the transcription of a reporter gene coupled to a promoter associated with a bone morphogenetic protein and/or their ability to stimulate calvarial growth in model animal systems.

7 Claims, 91 Drawing Sheets

At least Ar ¹ —linker 1.5—15	(1)	
Ar ¹	Ar ²	
contains 5-membered heterocycle	substituted or unsubsituted benzene	II–A
contains 5-membered heterocycle	substituted or unsubstituted naphthalene	II-B
contains 5-membered heterocycle	contains 6-membered heterocycle	II–C
contains 5-membered heterocycle	contains 5-membered heterocycle	II-D
contains 6-membered heterocycle	substituted or unsubstituted benzene	II–E
contains 6-membered heterocycle	substituted or unsubstituted naphthalene	II-F
contains 6-membered heterocycle	contains 6-membered heterocycle	II–G
substituted or unsubstituted naphthalene	substituted or unsubstituted benzene	II-H
substituted or unsubstituted naphthalene	substituted or unsubstituted nophtholene	II-I
substituted or unsubstituted benzene	substituted or unsubstituted benzene	II-J

FIG. I

	C9 CELLS		10/1/96				
5x 10	3 CELLS/WELL						
	uM	READ 1	READ 2	AVERAGE	INDUCTION	AVE-BASAL	%MAX
0S-8	100.000) 0.21	0.22	0.22	0.18	-0.99	-17.90
	31.250		4.44	4.20	3.49	3.00	54.26
	9.76		6.46	6.72	5.59	5.52	100.00
	3.05		4.88	4.75	3.95	3.55	64.22
	0.954		3.16	3.14	2.61	1.94	35.12
	0.298		2.59	2.67	2.22	1.47	26.58
	0.09		2.04	2.07	1.72	0.87	15.77
	0.029	1.56	1.71	1.63	1.36	0.43	7.60
	0.009		1.42	1.44	1.19	0.23	4.21
	0.0028		1.37	1.33	1.10	0.12	2.25
	0.000		1.30	1.31			
	0.000		1.00	1.10			
		AVERAGE BA	SAL	1.20			
% MAX	100.00 80.00 60.00 40.00 20.00					-	← 0S-8
	0.00 0.00	0.01	0.10	1.	1 00 1	0.00 1	∖ 1 00.00
-	-20.00			M OS-8			7

FIG. 2

NNC#	MOL.WEIGHT	CONCENTRATION		%RESPONSE	
<u> </u>					
, , ,					
50 0104	430.33				
50-0194 50-0194	450.55	100.00	uМ	-19.190	
<u> </u>		31.25		32.450	
		9.77		-14.240	
		3.05		-11.330	
		953.67		-12.790	
		298.02		-13.450	
		93.13	nM	-12.290	
		29.10		-9.440	
		9.09	nM	-6.450	
		2.84	nM	-8.130	NH 1
		888.18	рМ	-3.320	
			ļ		
NY LING					
50-0195	275.36				
50-0195		100.00	uM	-4.630	
		31.25		16.790	
		9.77	uМ	62.830	
		3.05	uM	102.720	
		953.67		60.860	
		298.02		32.450	
		93.13		19.340	
		29.10		17.220	
		9.09		5.640	
		2.84		4.840	
		888.18	рм	5.640	
			}		
N± 0					
0, 0					
50-0196	276.30				
50-0196	2/0.30	100.00	uM	-16.210	
		31.25		-8.560	
		9.77	'uM	11.620	
	1	3.05	uM	27.790	
		953.67	nM	18.390	
		298.02	nM	6.230	
		93.13	i nM	12.420	
		29.10		12.630	
		9.09) nM	6.590	
		2.84	h nM	7.970	
		888.18	рМ	5.060	L

FIG. 3A

				1	
			· · · ·		
N ² → N ² →					
1 T			1		
50-0197	274.37	-			
50-0197		100.00		-18.250	
		31.25		-14.980	
		9.77		4.040	
		3.05		93.790	
		953.67		205.530	
		298.02	nM	242.920	
		93.13		195.890	
		29.10		115.320	
	<u>}</u>	9.09		85.630	
	<u> </u>	<u>2.84</u> 888.18	nM	54.380 33.180	
Н	<u>├</u> ────────────────────────────────────	000.10			
NN					
S N Y					
59-0008	05 4 70				
39-0008	254.32				
N ⁻					
59-0019	59-0019	100.00			
59-0019		100.00		-22.240	
		31.25		-22.670	
	<u> </u>	9.77 3.05		<u>-17.470</u> 74.490	
		953.67			
		298.02		198.080 258.340	
		93.13		225.350	
	-	29.10		75.220	
		9.09		24.030	
	P	2.84	nM	34.480	
		888.18	рМ	-3.740	
				T	
59-0020	266.73				
59-0020		100.00	uM	-16.510	
		31.25	uM	<u> </u>	
		<u>9.77</u> 3.05	uM	-0.270	
		3.05	UM	96.490	
		953.67	nM	153.320	
		298.02	nM	110.240	
1		93.13	INM	60.030	

FIG. 3B

29.10 nk	M 37.870	
9.09 nM	M 24.820	
2.84 nk	M 20.500	
888.18 pl	M 13.310	

FIG. 3C

·····			T	1 1
CI				
			1	
50,0021 F	004 70			
59-0021 F	284.72	100.00		-16.310
59-0021		31.25		-12.850
		9.77		84.130
		3.05		89.940
······································		953.67		65.750
		298.02		33.940
		93.13		22.560
		29.10		25.020
		9.09		13.910
		2.84		33.270
		888.18		15.500
			1	
· ·				
59-0022	266.37			
59-0022		100.00	uM	7.250
		31.25		-2.070
<u> </u>		9.77		-0.270
		3.05		4.390
		953.67		3.060
		298.02		-1.800
		93.13		-0.200
		29.10		-3.270
		9.09		1.130
		2.84		2.590
		888.18		2.460
ο OH.				
l ila				
γ				
59-0023	239.28			
59-0023		100.00	uM	-12.720
		31.25		33.140
		9.77	uM	56.500
		3.05	uM	29.550
	-1	953.67		25.360
		298.02	nM	15.700
		93.13	nM	7.380
		29.10	nM	9.710
		9.09	nM	1.000
		2.84	nM	4.520
		888.18		-0.010

FIG. 3D

	000.00				
59-0024	220.28				
59-0025	224.31				
59-0025		100.00		-25.590	
		31.25	uM	14.150	
		9.77	uМ	50.690	
		3.05		57.880	
		953.67	nM	38.900	
		298.02	nM	28.530	
		93.13	nM	19.660	
		29.10	nM	17.490	
		9.09	nM	-0.600	
		2.84	nM	-4.190	
		888.18	рМ	4.670	
UN NO NO					
59-0026	248.29				
59-0026		100.00	uM	-29.830	
		31.25	uM	-9.440	
		9.77		-10.470	
		3.05	uM	46.220	
		953.67		107.760	
		298.02	nM	86.720	
		93.13	nM	36.850	
		29.10	nM	26.720 8.520	
		9.09	İnM	8.520	
		2.84	nM	-1.240	
		2.84 888.18	рМ	4.020	

FIG. 3E

	T			1 ·····	
NH H					
H []					
59-0027	250.30				
59-0027	200.00	100.00	uM	89.810	
		31.25		54.670	
	1	9.77		44.940	
	1	3.05		23.780	
		953.67		8.380	
		298.02		6.330	
		93.13	oM	7.360	
	+	29.10		3.380	
		9.09		-1.620	-
		2.84		-3.670	
		888.18	OM .	-0.720	
		000.10	Pm	-0.720	
50 0028	226.28		-		
<u>59-0028</u> 59-0028	220.20	100.00	uM	-26.750	
0020	+	31.25		-16.740	
	++	9.77		29.550	
	++	3.05		100.580	
	<u> </u>	<u> </u>		54.940	
	++-	309.07	INM	31.340	
	╆	<u>298.02</u> 93.13		7.500	
	<u> </u>			7.500	
	<u> </u>	29.10			
	<u> </u>	9.09	InM.	7.880	
	 -	2.84		3.140	
		888.18	рм	4.670	

FIG. 3F

				ļ	
59-0029	249.27				
59-0029		100.00		-15.150	
		31.25		41.940	
		9.77		36.630	
		3.05		7.120	
		953.67	nM	21.880	
		298.02		15.540	
		93.13		1.810	
		29.10		1.370	
		9.09	nM	12.140	
		2.84	nM	-4.230	
		888.18	рм	9.040	
					1
59-0030A	233.28				
59-0030A		100.00	uM	-27.970	
		31.25	uM	-22.830	
		9.77		-5.420	
		3.05		57.280	
		953.67		72.620	
		298.02		53.000	
		93.13	nM	29.990	
		29.10	nM	14.630	
		9.09	nM	3.870	
		2.84		6.970	
		888.18	рМ	1.810	
59-0031	231.30				
59-0031		100.00	uM	-25.790	
		31.25		-17.810	
		9.77	Mu	20.840	
		3.05	uM	87.380	
		953.67	nM	49.320	
		298.02	nM	43.110	
		93.13	i nM	29.530	
		29.10) nM	1.810	
		9.09) nM	1.220	
		2.84	l nM	-0.550	
		888.18	рМ	4.160	

FIG. 3G

	· · · · · · · · · · · · · · · · · · ·		<u> </u>	T T	
н 🗸					
59-0032	248.29	100.00		7 700	
59-0032		100.00		-7.780	
		31.25	UM	40.750	
		9.77		42.820	
		3.05		<u>25.700</u> 31.170	
		953.67		34.410	
		298.02 93.13		34.410	
				4.320	
		29.10		-10.000	
		9.09	INM		
		2.84		5.650	
		888.18	рм	11.990	
0					
59-0033	248.29				
59-0033		100.00	uM	-28.180	
		31.25	uM	-11.590	
		9.77	uМ	55.300	
		3.05	uM	49.710	
		953.67	nM	47.410	
		298.02		0.250	
		93.13	nM	7.980	
		29.10	nM	-8.940	
		9.09	nM	-7.630	
		2.84		-0.400	
		888.18	рМ	-5.980	
N N N					
59-0034	268.34				
59-0034		100.00		-28.51	
		31.25		24	
		9.77	uM	73.58	
		3.05	uM	37.91	
		953.67	nM	20.09	
		298.02	nM	16.87	
		93.13	nM	15.23	
		29.10	nM	28.83	
		9.09	nM	9.08	
		2.84		23.02	
		888.18	pM	-0.32	

FIG. 3H

	<u> </u>		<u> </u>	1
Н				
- North				
59-0035	291.36	100.00		
59-0035		100.00		-14.92
		31.25		29.17
		9.77	the second se	15.87
		3.05		18.8
		953.67		3.88
		<u>298.02</u> 93.13		6.15
				3.22
		29.10		-10.03
		9.09		15.58
		<u>2.84</u> 888.18	INM	-3.56
		000.10	lhwi	-7.13
$\sim N \downarrow \sim 1$				
59-0036	262.31			
59-0036		100.00		-0.98
		31.25		-3.25
		9.77		-4.54
		3.05		-1.95
		953.67		0.32
		298.02		-6.49
		93.13		-17.19
		29.10		-0.66
		9.09		-5.52
		2.84		-9.4
		888.18	рМ	-16.53
он о				
59-0037	308.00	100.00		
59-0037		100.00		-10.69
		31.25	UM	-11.99
		9.77		-10.03
		3.05		-19.11
		953.67	INM	2.27
		298.02	n M	-2.9
		93.13		
		29.10		-10.69
		<u>9.09</u> 2.84		2.59
		888.18	nM	-2.59
L	<u>l</u>	000.10		12.39

FIG. 3I

l O					
n 🗸					
59-0038	291.36				
59-0038		100.00		-23.430	
		31.25		-8.390	
		9.77		-0.100	
		3.05		-2.860	
		953.67		-2.240	
		298.02		3.900	
·		93.13		6.350	
		29.10		1.150	
		9.09		6.960	
		2.84	nM	-4.390	
	╡────┤	888.18	рМ	0.380	
0					
			1		
Ň, N					
L c L v = N					
- 3 M []			[
59-0039	710 75				
59-0039	312.35	100.00		14.170	
53 0033	+	31.25		7.620	
		9.77		1.940	
		3.05		-3.140	
		953.67		-7.770	
		298.02		-5.980	
		93.13	nM	-8.820	
·····	1 1	29.10		-2.390	
	+	9.09		-16.580	
		2.84		-4.480	
		888.18		-0.450	
			P	0.700	
59-0040 I	290.37		6		
59-0040		100.00	uM	-20.400	
		31.25		-17.310	
		9.77		-8.110	
		3.05		32.180	
		953.67		36.180	
		298.02	nM	17.440	_
		93.13	nM	2.040	
		29.10	nM	10.350	
		9.09	nMi	6.070	
		2.84	nM	6.960	
		888.18	рМ	13.440	

FIG. 3J

HN N					
Br					
59-0041	501.90				
59-0041		100.00		-18.37	
		31.25		-17.33	
		9.77		-5.11	
· · · · · · · · · · · · · · · · · · ·		3.05		3.31	
		953.67		-0.77	
			nM	-1.56	
		93.13		3.55	
		29.10		-11.24	
		9.09		0.25	
		2.84	nM a.V	-0.27	
		888.18	рм	2.02	
l O					
Ld. dama					
59-0042	281.36				
59-0042		100.00		163.51	
		31.25		-7.67	
		9.77	uM	9.41	
		3.05		0.75	
		953.67		6.11	
		298.02		3.82	
		93.13		2.54	
		29.10		4.07	
		9.09		-9.73	
		2.84		-0.02	
		888.18	рМ	18.37	
59-0043	280.29	100.00	L		
59-0043		100.00		20.66	
		31.25	UM	7.4	
		9.77		-1.29	
		3.05		-2.31	
		953.67	nM	1.54	
		298.02	nM	-0.79	
		93.13		1.52	
		29.10	INM .	2.79	
		9.09	nM nM	-0.27	
		2.84	nM old	8.92	
		888.18	lhw.	-4.34	

FIG. 3K

	· · · · ·			<u></u>	
Br					
			i .		
↓ ↓ ↓					
59-0044	341.21	100.00	14	7.70	
59-0044		100.00		7.38	
		31.25		11.72	
		9.77		12.49 -0.52	
		3.05		0.5	
		953.67			
		298.02 93.13		<u>6.11</u> -1.54	
	-	29.10			
		9.09		19.14	
	<u>├</u> ───── <mark>┣</mark> ─	<u>9.09</u> 2.84	nM nM	7.13	
		888.18	nM	<u>-2.06</u> 5.84	
0 _ OH		0.00.10		5.04	
59-0045 H	283.33	400.00			
59-0045		100.00		52.37	64.460
		31.25		148.43	192.960
			uM	204.47	422.540
		3.05		280.3 254.82	437.020
		953.67		254.62	410.890 266.090
		298.02 93.13		196.98	183.730
		29.10		96.06	80.440
		9.09		67.35	55.530
		2.84		52.99	44.160
		2.04		J2.99	44.100
CI					
59-0046	389.37				
59-0046		100.00	uM	79.33	
	†	31.25		2.24	, , , , , , , , , , , , , , , , , , ,
		9.77	uM	-1.67	
		3.05	uМ	-6.18	
		953.67	nM	0.001	
		298.02	nM	-3.63	
·		93.13	nM	-0.84	
		29.10	nM	-8.42	
		9.09	nM	3.92	
		2.84	nM	0.3	
		888.18	рМ	5.61	

FIG. 3L

				<u>, </u>	
N					
I L FN-N I Y					
59-0047	303.37				
59-0047		100.00		-6.73	
		31.25		10.38	
		9.77		-6.16	
		3.05		-1.39	
		953.67	nM	-10.11	
		298.02	nM	-4.49	
		93.13		-7.28	
		29.10		-12.34	
		9.09		-3.08	
		2.84		-2.26	
		888.18	рм	-5.34	
1					
50-0048	384.50				
<u>59-0048</u> 59-0048	<u> </u>	100.00	uM	-6.73	
55-00+0		31.25		0.27	
		9.77		-5.61	
		3.05		-2.26	
		953.67		-12.89	
		298.02		-1.69	
		93.13		-4.77	
		29.10		-8.14	
		9.09		-3.92	
		2.84		-11.2	
		888.18		-4.77	
N					
N Y					
Ŭ V					
59-0049	251.29				
59-0049		100.00	uM	4.49	
		31.25		0	-
		9.77	uM	-4.77	
		3.05	uM	1.96	
		953.67	nM	8.69	
		298.02	InM	-5.04	
		93.13	InM	-2.24	
		29.10	nM	1.69	
		9.09	nM	-4.49	
		2.84	nM	2.24	
		888,18	рМ	-0.3	

FIG. 3M

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		r		T	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		707.70				
31.25 uM 10.02 9.77 uM 11.29 3.05 uM -4.68 953.67 nM -6.92 298.02 nM -5.65 93.13 nM 1.69 29.10 nM -7.57 9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 59 59-0051 100.00 uM 32.36	59-0050	303.36	100.00		10.70	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59-0050		100.00			
3.05 JM -4.68 953.67 nM -6.92 298.02 nM -5.65 93.13 nM 1.69 29.10 nM -7.57 9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 100.00 JM 31.25 JM -18.42			31.25	UM	10.02	
953.67 nM -6.92 298.02 nM -5.65 93.13 nM 1.69 29.10 nM -7.57 9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 1 5.2 1 251.35 59-0051 251.35 100.00 uM 32.36 31.25 uM -18.42						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3.05	UM .		
93.13 nM 1.69 29.10 nM -7.57 9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 59-0051 100.00 uM 32.36 -18.42			953.67	nM		
29.10 nM -7.57 9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 59-0051 100.00 uM 31.25 uM -18.42						
9.09 nM -12.05 2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 59-0051 100.00 uM 32.36 31.25 uM -18.42					1.69	
2.84 nM -13.63 888.18 pM 5.2 59-0051 251.35 59-0051 100.00 µM 31.25 µM -18.42						
888.18 pM 5.2 59-0051 251.35 59-0051 100.00 µM 32.36 31.25 µM -18.42			9.09	InM	-12.05	
59-0051 251.35 59-0051 100.00 µM 31.25 µM -18.42			2.84			
59-0051 100.00 uM 32.36 31.25 uM -18.42			000.10	рм	5.2	
59-0051 100.00 uM 32.36 31.25 uM -18.42						
59-0051 100.00 uM 32.36 31.25 uM -18.42	59-0051	251.35				
31.25 uM -18.42	59-0051		100.00	uM	32.36	
3.05 uM -13.94					-13.94	
<u> </u>					-12.02	
298.02 nM -14.59					-14.59	
93.13 nM -7.55					-7.55	
29.10 nM -11.4						
9.09 nM -14.91						
2.84 nM -10.74			2.84	nM		
888.18 pM -20.03			888 18	рM	-20.03	

FIG. 3N

					:
59-0052	393.28				
59-0052		100.00	uM	-21.62	
		31.25		-13.32	
		9.77		-21.31	
		3.05		-11.08	
		953.67		-20.66	
		298.02		-17.14	
		93.13		-16.49	
		29.10	nM	-11.4	
		9.09	nM	-10.74	
		2.84	nM	-11.08	
		888.18	рМ	-14.59	
, v j					
50,0057					
<u>59-0053</u> 59-0053	354.41	100.00			
33-0033		100.00		-17.14	
		31.25	UM	-21.31	
		9.77	UM UM	-9.47	
		3.05	uM aM	-11.08 -0.83	
		953.67 298.02	nM	-0.83	
		93.13	nM	-9.47	
		29.10	nM	-19.72	
		9.09	nM	-18.45	
		2.84	nM	-10.09	
		888.18	рМ	-2.76	
		000.10	F	~2.10	

FIG. 30

			<u> </u>	1	
Q I					
NH					
• N • •			ł		
59-0054	236.28				
59-0054		100.00		-20.04	
		31.25		-6.95	
		9.77		8.3	
		3.05		-3.37	
		953.67		-2.4	
		298.02		-0.99	
		93.13		-0.99	
		29.10		-1.94	<u> </u>
		9.09		5.92	
		2.84		-2.17	
<u> </u>		888.18	рм	-9.31	
S DH					
			ł		
N- UD-					
59-0055 HO O	425.51				
59-0055		100.00	uM	-13.76	
		31.25		-9.51	
		9.77		-2.02	
	1	3.05		3.24	
		953.67	nM	-6.27	
		298.02	nM	-4.05	
		93.13		-1.62	
		29.10	nM	-7.49	
		9.09	nM	-7.09	
		2.84	nM	-3.04	
Na ⁺					
0-1 OH					
L ÅÅ					
0-	F 10 3 1				
59-0056	512.34	100.00		1 10	
59-0056		100.00		-1.42	
		<u>31.25</u> 9.77	UM	0.18	
·		<u>9.77</u> 3.05		3.84	
				-5.07	
		953.67	<u>nM</u>	-7.29	
		298.02 93.13	nM oM	0.001	<u> </u>
		29.10		-4.25	<u> </u>
		9.09	nM	-1.02	
		<u>9.09</u> 2.84	nM	-3.85	
		2.04	11100	-0.00	

FIG. 3P

5~57N			
59-0057 ^{N-N}			
59-0057	100.00	υM	-24.150
	31.25	uM	-24.300
	9.77		-5.980
	3.05	uM	-11.500
	953.67	nM	-13.000
	298.02		-6.280
	93.13		-12.550
	29.10	nM	-6.870
	9.09		-8.520
	2.84		-16.290
· · · · · · · · · · · · · · · · · · ·			
59-0058			
59-0058	100.00	uM	4.170
	31.25		7.620
	9.77		-1.790
	3.05		-7.320
	953.67		-1.940
	298.02		-6.870
	93.13		-1.490
	29.10	nM	-8.370
	9.09		-5.080
	2.84		-12.400
59-0059			
59-0059	100.00		-18.700
	31.25	uM	-16.140
	9.77	uM	-3.090
	3.05	uM	0.150
	953.67	nM	6.010
	298.02	nM	-1.910
	93.13		-1.760
	29.10	nM	-9.100
	9.09		-8.220
	2.84	nM	-5.720

FIG. 3Q

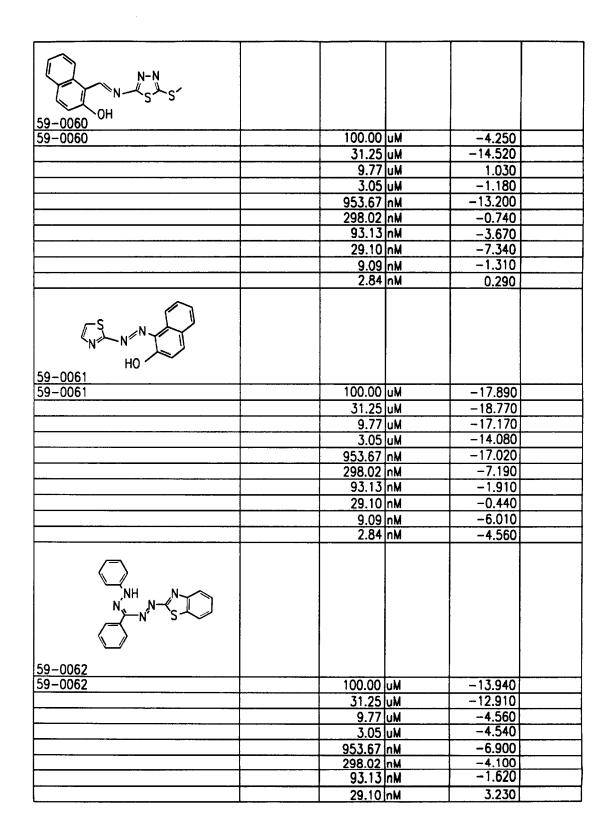


FIG. 3R

			0.070
	9.09	9 nM	8.070
	2.84	1 nM	0.440
s s			
N N			
59-0063			
59-0063	100.00		-2.510
	31.2		-6.130
		7 uM	-8.950
		5 uM	-8.020
	953.6		-8.010
	298.02	2 nM	-2.520
	93.1.		-5.810
	29.10) nM	-3.450
	9.0) nM	-4.390
	2.8	4 nM	-6.280
\sim			
N N			
59-0064			
59-0064	100.00		-23.090
	31.2	5 uM	-21.040
	9.7	7 uM	78.400
	3.0	5 uM	155.220
	953.6		113.120
	298.0	2 nM	30.640
	93.1		15.240
	29.1) nM	22.150
		9 nM	-0.770
	2.8	4 nM	4.410
S~			
N-N-			
_			
59-0065		1	
59-0065	100.0	DuM	-2.030
	31.0		-2.980
	9.7	7 uM	-15.240
		5 uM	-15.400
	953.6		-15.240
	298.0	2 nM	-10.520
	93.1	3 nM	-13.830
	29.1		-5.810
		9 nM	-3.620
	2.8	4 nM	-7.070
L		1	

FIG. 3S

H ₂ N				
59-0066				
59-0066	100.00	uМ	10.060	
	31.25	uM	2.680	
	9.77	uМ	10.850	
	3.05	uM	14.610	
	953.67	nM	0.950	
	298.02	nM	3.780	
	93.13	nM	1.730	
	29.10	nM	-2.820	
	9.09	nM	-2.820	
	2.84	nM	-3.920	
			1	
N~s				
59-0067				
59-0067	100.00		-24.040	
55-0007			-24.890	
	31.25 9.77		-1.450	
			60.900	
	3.05		133.860	
·····	953.67 298.02		75.330	
	93.13		28.760	
	29.10		20.070	
	9.09		4.980	
	2.84		4.960	
	2.07		4.450	
				ĺ
				Í
H N				
59-0068				
59-0068	100.00	u M	-22.130	
	31.25		-7.880	
	9.77	<u>ым</u> ц М	93.900	
	3.05	uM	81.060	{
	953.67		22.330	{
	298.02	nM	17.300	
	93.13	nM	8.460	
	29.10		-3.530	
·	9.09		-4.230	
	2.84	nM	-6.140	
	£.07[i			

FIG. 3T

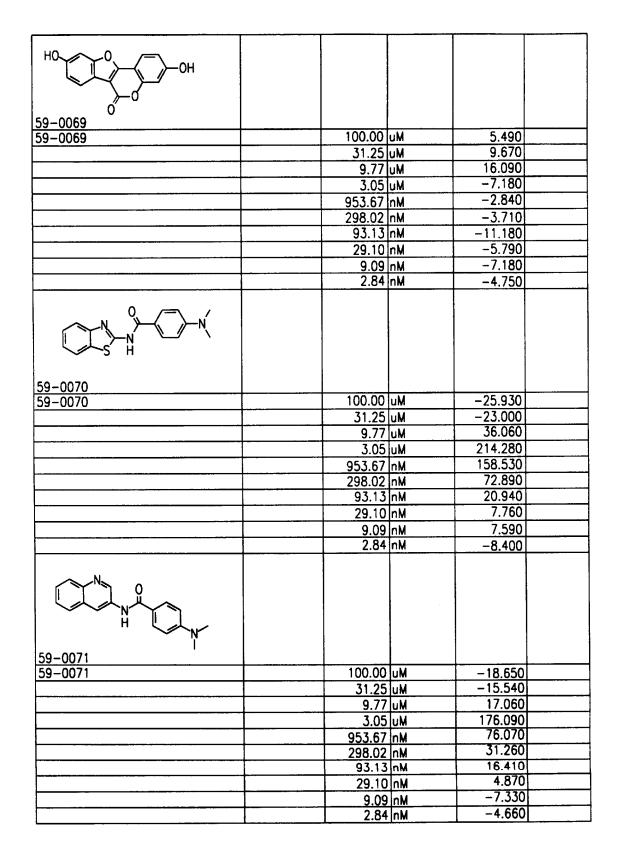


FIG. 3U

S H Q				
500072				
<u>59-0072</u> 59-0072	100.00	uМ	-19.750	
53-0072	31.25		-18.650	
	9.77	иM	-18.430	
	3.05	ыM	-15.770	
	953.67	nM	9.970	· · · ·
	298.02	nM	74.740	
	93.13		175.430	
	29.10		213.580	
	9.09		164.320	
	2.84	nM	119.100	
	888.18	рМ	60.770	
		<u> </u>		
FNNNN				
FT				
F				
59-0073				
59-0073	100.00	uM	-3.010	
	31.25		-4.830	
	9.77		-9.660	
	3.05		-4.680	
	953.67		-6.500	
	298.02	nM	-2.510	
	93.13	nM	7.140	
	29.10	nM	0.97	
	9.09		-5.5	
	2.84	nM	5.3	
F CI CI F				
ן ' `` ` ~Q_, '				
F Stranger				
59-0074 F F				
59-0074	100.00	uM	-2.85	
	31.25	uM	2.14	
	9.77	uM	-4.85	
	3.05	υM	-3.5	
	953.67	nM	-4.85	
	<u>298.02</u> 93.13	nM	9.95	
	93.13	nM	4.47	
	29.10	nM	-8	
	9.09	nM	-4.17	_
	2.84	InM	6.97	

FIG. 3V

CI 59-0075 100.00 uM 59-0075 -0.68 -10.16 31.25 uM -5.35 9.77 uM -6.5 3.05 uM 953.67 nM -0.85 298.02 nM 5.97 93.13 nM 0.97 -2.35 29.10 nM 9.09 nM 0.32 10.47 2.84 nM 59-0076 59-0076 100.00 uM -19.12 31.25 uM 9.29 9.77 uM 10.63 22.43 3.05 uM 19.93 953.67 nM 298.02 nM 3.47 19.93 93.13 nM 29.10 nM 10.63 14.28 9.09 nM 2.84 nM 11.3 59-0077 -20.96 59-0077 100.00 uM -16.23 31.25 uM -10.589.77 uM -11.96 3.05 uM -19.44 953.67 nM -17.3 298.02 nM -13.79 93.13 nM -15.62 29.10 nM -14.09 9.09 nM 2.84 nM -14.4

FIG. 3W

5,922,753

	T		
N N N N N			
N ²			
59-0078 I	100.00		00.540
59-0078	100.00		-26.540
	31.25		-22.560 71.530
	9.77		207.960
	953.67		379.230
	298.02		241.460
	93.13		136.100
	29.10		84.020
	9.09		50.350
· · · · · · · · · · · · · · · · · · ·	2.84		56.600
	888.18		92.520
~	000.10	h.u.	32.320
59-0079			
59-0079	100.00	uM	-34.980
	31.25		-21.390
	9.77		37.200
	3.05		122.580
- Martin Martin Andrews McConstant in the second	953.67		69.010
	298.02	nM	64.000
······································	93.13	nM	46.490
	29.10		30.310
	9.09		33.490
	2.84	nM	29.760
0 $ 0$			
59-0080			6 700
59-0080	100.00		5.390
	31.25	<u>uM</u>	5.560
	9.77		6.440
	3.05	<u>uM</u>	2.440
	953.67		-5.030
	298.02	nM	7.660
	93.13		-3.630
	29.10		3.650 1.050
	9.09	nM	
	2.84	n M	6.940
		1	
59-0081			

FIG. 3X

50 0004			
59-0081	100.00		62.840
	31.25		11.300
	9.77		-8.670
	3.05		2.440
	953.67	nM	-5.200
	298.02	nM	-2.080
	93.13	nM	1.220
	29.10		-2.250
	9.09		1.050
	2.84	nM	-3.300
н			
N _N			
~s~v~			
59-0082 ^O			
59-0082	100.00		111 70
			<u>111.79</u> 62.68
	31.25	UM 	
	9.77		32.36
	3.05		9.11
	953.67	nM	-10.62
	298.02	nM	-1.86
	93.13		-6.89
	29.10	nM	-3.91
	9.09	nM	2.22
	2.84	nM	16.36
59-0083			
59-0083	100.00	uM	48.93
	31.25	uM	40.91
	9.77		25.85
	3.05		17.85
	953.67		8.55
	298.02	nM	3.9
	93.13	oM	2.05
			7.99
	29.10		
	9.09	INM	-3.91
	2.84	nM	3.35
59-0084			
59-0084	100.00	luMi	37.670
	1 100.00		
	31.25	uM	
	<u>31.25</u> 9.77	uM	26.050 9.210

FIG. 3Y

	1		
	953.67		
	298.02	nM 5.900	
	93.13		
	29.10		
	9.09		
	2.84	nM –2.080	
Н			
ПСТОН			
• • • •			
59-0085	100.00		
59-0085	100.00		
	31.25		
	9.77		
	3.05		
	953.67		
	298.02 93.13		
	29.10		
	9.09		
	2.84		
······································	2.04	11M 3.340	
59-0086 ОН			
59-0086	100.00	uM 30.750	
	31.25		
	9.77		
	3.05		
	953.67		
	298.02		
	93.13		
	29.10		
	9.09		
	2.84	nM 1.530	
59-0087			
59-0087	100.00	uM 10.660	
	31.25		
	9.77		
	3.05		
	953.67	nM 17.070	
	298.02	nM 7.950	
	93.13	nM -4.460	
	29.10	nM 4.510	
	9.09	nM –0.470	
······································	2.84	nM 9.660	

FIG. 3Z

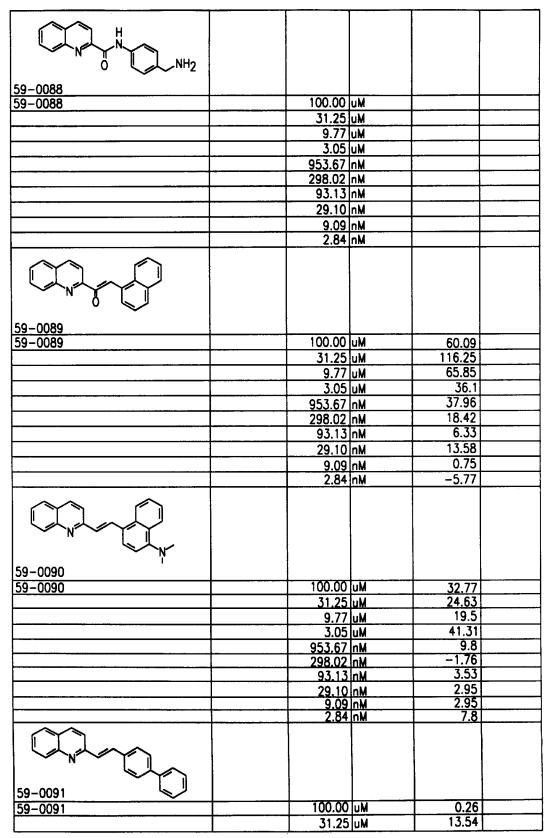


FIG. 3AA

· · · · · · · · · · · · · · · · · · ·		F	
	9.77		95.94
	3.05		87.71
	953.67		44.17
	298.02		38.26
	93.13		23.87
	29.10		21.65
	9.09	nM	10.95
	2.84	nM	20.92
59-0092			
59-0092	100.00	uM	-11.56
	31.25		17.84
	9.77		50.19
	3.05		25.84
	953.67		14.4
	298.02		6.77
	93.13	nM nM	8.62
	29.10		2.22
			8.38
	9.09	INM	0.30
	2.84	nM	
59-0093			
59-0093	100.00		-11.67
	31.25		15.02
	9.77		35.44
	3.05	uM	29.89
	953.67	nM	22.88
	298.02	nM	19.56
	93.13	nM	5.18
	29.10		7.39
	9.09	nM	4.56
	2.84		5.9
59-0094			
59-0094	100.00		-17.69
	31.25		45.15
	9.77	uM	24.97
	3.05	uM	19.81
	_953.67	nM	9.35
	298.02	nM	1.36
	93.13		9.24
	29.10	nM	-0.48
	9.09		6.16
	2.84	ICIM	

FIG. 3BB

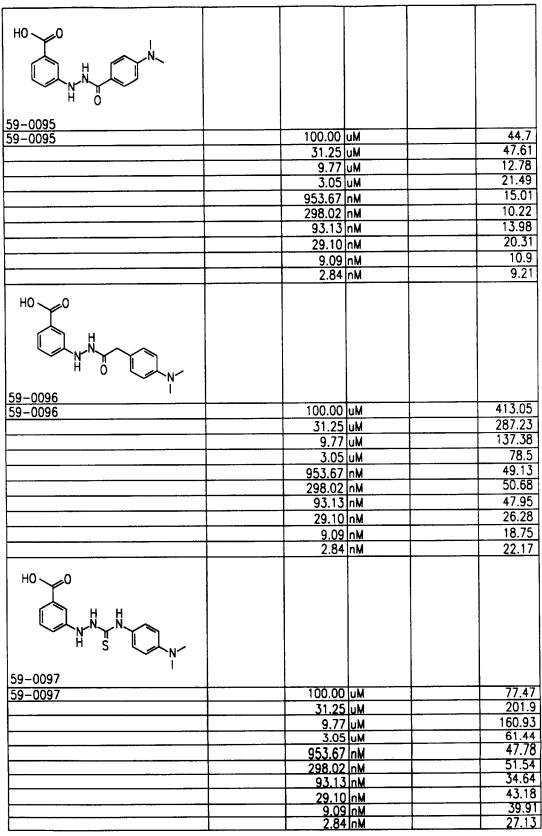


FIG. 3CC

·····		,		
40 0				
HO				
Ň.				
59-0098	100.00			1.70
59-0098	100.00		<u> </u>	<u>-1.38</u> 186.89
	<u> </u>		++	221.7
	3.05		+	164.69
	953.67			96.94
	298.02		1 1	68.25
	93.13		1 1	57
	29.10		1	51.88
	9.09		1	41.29
1	2.84	nM	1 1	33.43
N −				
Ĩ				
59-0099				
59-0099	100.00	uM	13.040	
	31.25	UM	56.880	
	9.77	UM	119.340	
	3.05		237.420	
	953.67		285.440 164.610	· · · · · ·
	298.02		123.300	
	29.10		69.240	
	9.09		44.500	
	2.84	nM	47.390	
	2.04		47.550	
N L				
59-0100				
59-0100	100.00	uM	-10.020	
	31.25	uM	-10.730	
	9.77	uM	30.340	
	3.05	uM	114.410	
	953.67	nM	77.540	
	298.02	nM	40.290 35.730	
	93.13	nM	35.730	
	29.10	nM	28.290	
	9.09 2.84	nM	11.470	
	2.04			
HN N-				
59-0101				
59-0101	100.00	υM	26.370	

FIG. 3DD

		31.25		12.440
		9.77		-0.780
		3.05		10.280
		953.67	nM	2.110
		298.02	nM	7.860
		93.13		1.140
		29.10	nM	2.820
		9.09	nM	4.150
		2.84	nM	5.590
∽s ",				
U				
59-0102	284.34			
59-0102		100.00	uM	-24.350
		31.25		-11.140
		9.77		63.540
		3.05		121.320
		953.67		79.530
		298.02		72.460
		93.13		66.290
		29.10		45.690
		9.09		27.260
		2.84	nM	42.330
		888.18	nM	33.430
59-0103 S	313.38			
35 0103		100.00	uM	-29.69
		31.25		-29.53
		9.77		-28.22
		3.05		-27.72
		953.67		-5.58
		298.02		54.15
		93.13		170.95
		29.10		222.87
		9.09	nM	210.39
		2.84	nM	203.4
		0.80	nM	114.55
	1	0.00		
59-0104 H	297.31			
	237.31	100.00	uM	-29.84
		31.25		-26.72
		9.77		-29.2
	<u>}</u>	3.05	uM	-27.05
		0.00	1	04.77
		953.67	InM	24.3/
		953.67 298.02	InM	24.37 196.42

FIG. 3EE

•				
		29.10		220.04
· · · · · · · · · · · · · · · · · · ·		9.09	nM	245.42
		2.84		182.45
		0.80	nM	119.55
н н 🗸 0-				
59-0105	267.29			
		100.00		-25.72
		31.25		-15.89
		9.77		31.7
		3.05		54.17
		953.67		53.67
		298.02		41.35
		93.13		44.5
	ļ	29.10		39.02
		9.09		25.38
	<u> </u>	2.84		31.7
		0.80	nM	18.05
N. 0				
59-0106 - 0 ⁻	297.31			
155-0100	237.31	100.00	LIM.	-14.05
	+ +	31.25		223.52
		9.77		202.58
		3.05		107.73
		953.67		71.3
		298.02		44.84
		93.13		26.54
		29.10		23.05
	<u> </u>	9.09		27.87
		2.84		12.23
		0.80	nM	11.4
HO				
Н П Ц Ц				
59-0107	332.38			
		100.00		48.55
		31.25		22.87
		9.77	υM	7.19
	Ļ	3.05		0.65
		953.67		11.12
······································	<u>├</u> ─────┤	298.02		-3.92
	<u> </u>	93.13		1.09
L <u>.</u>	łl.	29.10	INM	-15.69

FIG. 3FF

			· · · · · ·	
		9.09	nM	-11.32
	_	2.84		-2.62
		0.80	nM	-16.11
НО 0				
Н СТО				
59-0108	316.31			
	310.01	100.00	uM	227.73
		31.25		96.02
		9.77	uM	58.57
		3.05		37.23
		953.67		18.94
	-	298.02	nM	25.68
		93.13	nM	-4.8
		29.10		2.62
	++	9.09		-4.8
		2.84		3.92
		0.80		4.14
		0.00		
ноо				
I H d V				
0				
59-0109	316.31			
		100.00	uM	43.12
		31.25		27.64
		9.77	μM	5.89
		3.05	uM	6.32
		953.67	nM	13.51
		298.02	nM	7.85
		93.13	nM	3.71
		29.10		-3.27
		9.09		5.01
		2.84	nM	-4.58
		0.80	nM	6.98
HO, O				
59-0110	286.29			
		100.00	υM	65.11
		31.25		67.05
		9.77	uМ	35.27
		3.05	uM	25.26
		953.67	nM	27.01
		298.02	nM	15.24

FIG. 3GG

	· · · · · · · · · · · · · · · · · · ·		F	
		93.13		10.68
		29.10		5.89
		9.09	nM	5.45
		2.84		10.24
		0.80	nM	4.14
но				
H ₂ N-N-OH				
59-0111	152.15	100.00		
		100.00		23.360
		31.25		22.330
· · · · · · · · · · · · · · · · · · ·		9.77		12.260
		3.05		5.390
		953.67		2.190
		298.02		1.230
		93.13		2.430
		29.10		6.350
		9.09		4.350
		2.84	InM	4.350
		0.80	nM	3.230
°↓↓				
59-0112	149.19			
35-0112	145.15	100.00	M	2.670
		31.25		4.670
······································		9.77		2.750
		3.05		3.790
		953.67		4.270
·····		298.02		1.150
		93.13	nM	9.630
		29.10		0.920
		9.09		0.510
		2.84		12.900
		0.80		2.990
		0.00		2.550
$\sim N^2$				
59-0113	274.37			
		100.00		22.010
		31.25		25.940
		9.77		7.500
		3.05		3.070
		953.67		-0.760
		298.02		-4.690
		93.13		-4.790
······································		29.10	nM	5.090
		9.09	nM nM	0.150
		2.84	oM	0.150

FIG. 3HH

0=\$=0					
H ₂ N Ó					
No [‡]					
59-0114	475.54				
		100.00		52.030	
		31.25		36.120	
		9.77		25.840	
		3.05		16.670	
		953.67		12.540	
		298.02		9.420	
		93.13		-1.060	······
		29.10		2.160	
		9.09		-6.000	
		<u>2.84</u> 0.80	nM	2.470	
		0.00		-1.400	
C					
/ _/ \S-/					
59-0115	318.87				
		100.00	uM	73.700	
		31.25	uМ	2.770	
		9.77		-10.430	
		3.05		-12.340	
		953.67		-13.750	
		298.02		-13.960	
		93.13		-11.940	
		29.10		-9.830	
		9.09		-8.820 -0.950	
		2.84 0.80	nM nM	-0.950	
~~~~		0.00		-0.030	
O N LAN					
OH 59-0116	269.30				
53 0110	209.00	100.00		31.380	
		31.25	uMi	109.060	
		9.77		231.070	
		3.05	uM	240.670	-
		953.67	nM	132.020	
		298.02	nM	75.820	
		93.13	nM	53.250	
		29.10	nM	47.500	
		9.09 2.84	nM	<u>39.440</u> 42.170	
		0.80	nM	31.180	
		0.00			
<u> </u>					
50-0117	268.38				
59-0117	200.30			60 600	
		100.00	UM	-68.520	

FIG. 3II

r		11.00	1.14	7 (50)	
		31.25		-7.450	
· · · · · · · · · · · · · · · · · · ·	+	9.77		111.630	
		3.05		64.340	
		953.67		4.740	
		298.02		-19.270	
		93.13		-26.660	
		29.10			
· · · · · · · · · · · · · · · · · · ·		9.09	nM	-42.180	
		2.84	nM	-41.300	
		0.80	nM	-39.220	
59-0118 ^Ö	313.36				
		100.00	uM	-67.170	
		31.25		-56.580	
		9.77		-58.060	
		3.05		-55.720	
		953.67		-48.200	
		298.02		-50.300	
		93.13		-33.310	
		29.10		-47.340	
		9.09		-49.310	
		2.84		-56.200	
		0.80	nM	-57.310	
OH OF					
59-0119	314.34				
		100.00	υM	167.500	
		31.25	uМ	-29.240	
		9.77	uМ	-57.800	
		3.05	uМ	-52.030	
		953.67	nM	-54.240	
		298.02	nM	-53.870	
		93.13	nM	-38.110	
		29.10	nM	-55.100	
		9.09	nM	-52.270	
		2.84		-53.500	
		0.80	nM	-43.650	
59-0120	504.49				
		100.00	uM	-82.790	
		31.25		-80.470	
		9.77		-66.800	
	<u>├</u> ───	3.05	uM	-50.790	
	<u>├</u>	953.67		-54.240	$\neg$
		298.02	nM	-45.250	-
		93.13	nM	-50.660	

FIG. 3JJ

		29.10	nM	-50.300	
		9.09	nM	-50.300	
		2.84		-50.300	
		0.80	nM	-43.280	
N N					
59-0121 H	245.29				
		100.00	uM	-79.690	
		31.25		-75.590	
		9.77		25.650	
		3.05		94.850	
		953.67		43.910	
		298.02	nM	-1.800	
		93.13	nM	-4.150	
		29.10		-22.050	
		9.09		-31.110	
		2.84	nM	-26.760	
		0.80	nM	-28.270	
NH- NH- N N N N N N N N N N N N N N N N		:			
59-0122	333.39				
		100.00	11 <b>M</b>	-19.050	
		31.25		-12.080	
		9.77		-7.610	$\neg$
		3.05		25.210	
		953.67		83.580	_
		298.02		87.220	
		93.13		63.890	
		29.10		42.680	
		9.09	nM	45.320	
		2.84	nM	37.780	
		0.80	nM	27.030	
59-0123	347.42				
		100.00	uM	34.430	$\neg$
		31.25		34.710	
		9.77		38.620	
		3.05	uM	55.100	
		953.67		51.900	
		298.02		41.410	
		93.13		29.970	
	- <del> </del>	29.10		13.760	
	+	9.09	nM	17.120	
	+	<u>2.84</u> 0.80	nM nM	1.190	-+
		U.0U			

FIG. 3KK

	····		1		
59-0124	350.44				
		100.00	uM	56.640	
		31.25		81.500	
		9.77		145.880	
		3.05		135.830	
		953.67		268.990	
		298.02		224.290	
	i	93.13		134.850	
		29.10		91.690	
		9.09		80.390	
		2.84	nM	63.060	
		0.80	nM	51.460	
0.					
s-					
N					
HO					
ОН					
59-0125	372.45				
		100.00	uM	-6.780	
		31.25	uM	67.530	
		9.77	uМ	54.120	
		3.05	uM	28.700	
		953.67	nM	21.580	
		298.02	nM	22.280	
		93.13		22.700	
		29.10	nM	1.630	
		9.09	nM	15,700	
·		2.84	nM	9.840	
		0.80	nM	8.460	

FIG. 3LL

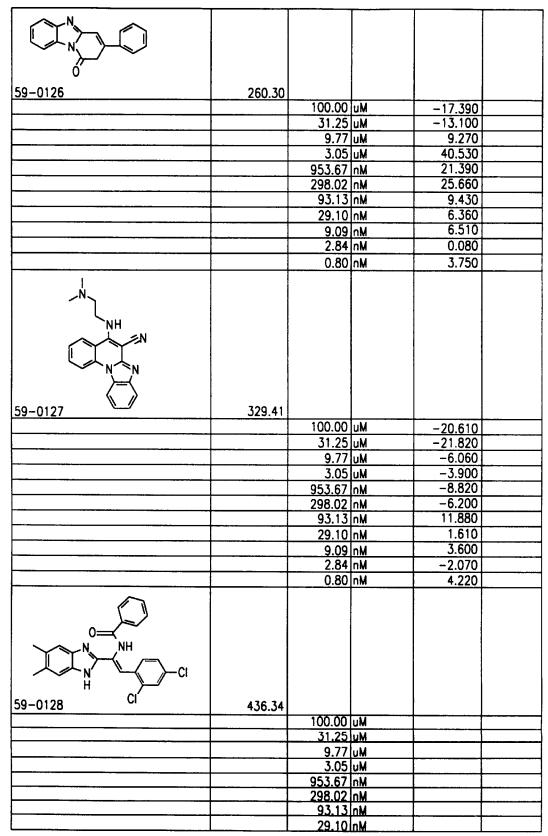



FIG. 3MM

· · · · · · · · · · · · · · · · · · ·		9.09	nM		
		2.84			
		0.80	nM		
N N					
	1				
			ļ		
59-0129	277.71				
		100.00		-20.46	
		31.25		-21.21	
	<u> </u>	9.77		44.36	
	╉╌───┤	3.05		4.38	
		953.67	nM	5.9	
***	┥───┼	298.02	nM	3.6	
	┥───┤	93.13		2.07	
······	╄	29.10	InM	4.22	
	╂	9.09	In <b>M</b>	-0.68	
	┫────┤	2.84		12.48	
	<u>↓</u>	0.80	n <b>M</b>	-0.53	
N					
<u>∧</u> N. //					
S'					
<u>59–0130</u>	287.34				
		100.00		4.38	
		31.25		8.35	
		9.77		5.91	
		3.05	uM	4.98	
	<u> </u>	953.67	nM	0.39	
		298.02	nM	8.66	
		93.13		2.85	
	ļ	29.10		3.6	
	<u> </u>	9.09	nM	4.36	
	┥────┤	2.84		8.96	
	$\downarrow$	0.80	InM	24.75	
NI .					-
∽∽∽s′ ∽́			1		
Ē Ķ					
59–0131 ĆI ĊI	331.22		1		
		100.00	uM	8.75	
	<u>+</u>	31.25		0.12	
	††	9.77		-10.38	
		3.05		-6.39	
	<u>†</u> †	953.67		-2.81	
		298.02	nM	1.61	
		93.13	nM	-1.98	
		29.10		-2.59	
	<u></u>	<u>9.09</u> 2.84		0.14	

FIG. 3NN

		0.80	nM	-0.5	
		0.00		0.0	
N NH					
0,~N,~0					
59-0132	313.32				
		100.00	υM	-17.1	
		31.25	uМ	-14.81	
		9.77	υM	-14.37	
		3.05	uМ	-12.92 -13.54	
		953.67		-13.54	
		298.02	InM - M	-10.38	
		93.13		-3.65	
		29.10		-6.18	
		<u>9.09</u> 2.84	nM nM	-9.97	
		0.80		-2.81	
		0.00	1.01998	2.01	
N_N_ 0_N_0					
0~~N~~0					
50 0133	207 74				
59-0133	327.34	100.00		_16.04	
		31.25	uM	-16.04 -16.91	
		9.77	uM	-17.31	
		3.05	uM	-16.7	
		953.67	nM	-9.34	
		298.02	nM	-12.69	
		93.13	nM	-11.23	
		29.10	nM	-17.74	
		9.09	nM	6.02	
		2.84	INM	-4.71	
		0.80	IUW	0.55	

FIG. 300

			<b>_</b>		
N. N.					
0,7N,60					
50 0134	757 77				
59-0134	357.37	100.00	1.1 <b>1</b> 4		
		31.25			
		9.77	uM	1	
		3.05	uM		<u> </u>
		953.67	nM		· · ·
		298.02	nM		
		93.13	nM		
		29.10	nM		
		9.09	nM		
		2.84			<u></u>
		0.80	nM		
N NH					
0,50 N-60					
_N_					
59-0135	356.39				
		100.00		-21.3	
		31.25	UM	-14.16	
		<u>9.77</u> 3.05		-1.98 0.97	
		953.67		11.68	
***		298.02	nM	-1.13	
		93.13	nM	-1.55	
		29.10	nM	-2.81	
		9.09	nM	12.11	
· · · · · · · · · · · · · · · · · · ·		2.84	nM	-5.75	
		0.80	nM	4.54	
I [ ] N / → , OH					
S' >- NH					ļ
59-0136 0	411.87				
		100.00	uM		
		31.25	uM		
	<b> </b>	9.77 3.05	UM M		
		3.05	UM - M		
		953.67	nM	I I	

FIG. 3PP

		000.00			
		298.02			
		93.13			
		29.10			
		9.09	nM		_
		2.84	nM		
		0.80	nM		
0					
Co. 0477	000 74				
59-0137	296.71	100.00	<b>M</b>		
		31.25		+	
······		9.77			
		3.05			
		953.67			
		298.02	nM		
· · · · · · · · · · · · · · · · · · ·	+	93.13	nM		
		29.10			
		9.09			
	++	2.84	nM		
		0.80			
		0.00		-+	
0≕<0_∕					
59-0138	340.81				
		100.00	uМ	-6.91	
		31.25		-12.68	
		9.77	uM	4.59	
		3.05		32.61	
		953.67	nM	19.07	
		298.02		8.18	
		93.13	nM	2.26	
		29.10	nM	12.22	
		9.09		56.42	
		2.84	nM	7.24	
		0.80		1.63	
			1		
0 59-0139	340 43				
0 59-0139	340.43	100.00	uM	45.53	
59-0139	340.43	100.00		45.53	
0 59-0139	340.43	31.25	uM	44.59	
59-0139	340.43	<u>31.25</u> 9.77	Mu Mu	44.59 53.62	
59-0139	340.43	<u>31.25</u> 9.77 3.05	uM uM uM	44.59 53.62 30.42	
59-0139	340.43	<u>31.25</u> 9.77	uM uM uM	44.59 53.62	

FIG. 3QQ

<b></b>			<u>г. м</u>	1
		29.10		14.4
		9.09	INM	13.93
		2.84		18.61
		0.80	nM	10.05
N CI			Í	
N			ł	
н У				
59-0140	289.17			
	203.17	100.00	uM	
		31.25		
		9.77	uM	
		3.05	uM	
		953.67		
		298.02		
		93.13	nM	
		29.10		
		9.09	nM	
		2.84	nM	
		0.80	nM	
0- 0- 59-0141	437.33			
55-01+1	+37.33	100.00	11 <b>M</b>	-6.76
	<u> </u>	31.25	uM	5.69
· · · · · · · · · · · · · · · · · · ·	1	9.77	uM	19.85
		3.05	uM	43.96
		953.67		44.73
		298.02		37.12
		93.13	nM	24.36
		29.10		18.6
		9.09	nM	26.7
	<b> </b>	2.84	InM	15.96
	ł	0.80	nM	7.87
	776.66			
59-0142	379.29	100.00		
	<u> </u>	100.00	UM M	9.43 33.72
	╀────╋	<u>31.25</u> 9.77		47.33
	<u> </u>	<u>9.77</u> 3.05		40.19
	╂────┼	J.UJ 057 67		36.53
	<u>}</u>	953.67 298.02	u im	29.94
		Z30.UZ		

FIG. 3RR

· · · · · · · · · · · · · · · · · · ·				
		29.10		20.9
		9.09	nM	19.14
		2.84		10.38
		0.80	nM	17.12
Cý cí				
│				
59-0143 F F	447.29			
00-0110		100.00	uM	0.4
		31.25		34.39
		9.77		42.21
		3.05		50.57
		953.67		36.94
		298.02	nM	27.23
		93.13	nM	16.99
		29.10	nM	19.27
		9.09		14.42
		2.84	nM	11.33
		0.80	nM	23.72
	746.40			
59-0144	316.40	100.00		11.50
		100.00		-14.59
		<u>31.25</u> 9.77		<u>-4.44</u> 47.1
		3.05		53.89
		953.67		43.11
		298.02		29.2
		93.13		18.5
		29.10		12.9
		9.09		5.54
		2.84		3.71
		0.80		5.87
F = F F = N F = F F =				
F				
59-0145	350.27		1	
		100.00	uM	435.91
		31.25	uM	422.15
		9.77	υM	446.93
		3.05	uM	434.17
		953.67	nM	238.34
		298.02	uM	45.99
		93.13		9.22
		29.10		7.71
		9.09	InM	0.11

FIG. 3SS

		204	-14	6 27
		2.84		6.27
		0.80	<u>nm</u>	3.55
NI				
50 0146	246.27			
59-0146	270.27	100.00		-63.05
	+ +	31.25		4.42
	+	9.77		-13.73
	+	3.05		-16.45
		953.67		-35.47
		298.02	nM	-51.25
		93.13	nM	-50.13
	+	29.10		-42.92
		9.09		-45.64
	+ +	2.84	nM	-56.58
	<u> </u>	0.80	nM	-39.68
S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
50 0147 V	714.70			
59-0147	314.36	100.00		05
		100.00		-85
		31.25		-85
	╀────┼	<u>9.77</u> 3.05		-41.67
		<u> </u>		78.69
		298.02		269.13
		93.13		323.59
	<u> </u>	29.10		339.88
	t tr	9.09		270.48
		2.84		245.58
		0.80		180.33
н		0.00		
H N FO				
59-0148	291.35			
	231.33	100.00	u M	-68.38
	<u>†</u>	31.25		-36.33
	<u> </u> −−−− <del> </del>	9.77		-2.3
		3.05		12.12
	t	953.67		-2.42
		298.02	nM	-16.21
	T	93.13	nM	-30.87
		29.10	nM	-35.58
	<b>  </b> -	9.09	nM	-39.07
	<u> </u>	2.84		-41.18
		0.80	nM	-45.53

FIG. 3TT

				T	<u> </u>
$\sim N$ $\rightarrow$ $\sim$ $N$					
⊥ ≫-N → `o					
59-0149	329.33	100.00			
		100.00		-16.9	
		31.25		-1.8	
		9.77		-0.53	
· · · · · · · · · · · · · · · · · · ·		3.05		15.29	
		953.67	nM - M	78.78	
	<u> </u>	298.02	NM NM	163.5	
		93.13		223.57	
		29.10		173.93	
· · · · · · · · · · · · · · · · · · ·		9.09	nM avi	122.3	
	┼───┼─	2.84	nM	98.02 69.06	
	<u> </u>	0.00		09.00	
0 ⁻ N ⁻					
59-0150	304.39				
		100.00		63.32	
		31.25		193.32	
		9.77		419.26	
		3.05		497.21	
		953.67		295.19	
		298.02		193.35	
	l	93.13		99.46	
		29.10	i	69.96	· · ·
	<u> </u>	9.09		59	
		2.84		52.16	
		0.80	nM	48.75	
н н					
0 0					
59-0151	278.311				
59-0151		100.00		-6.660	
		31.25	uM	16.240	
	<u>                                     </u>	9.77		18.300	
	ļ	3.05		11.690	
		953.67		8.500	
	<u> </u>	298.02	nM	9.070 6.110	
	╂────┤-	<u>93.13</u> 29.10	nM	5.880	
	† †	9.09	nM	7.700	
	†	2.84	InM	2.000	
		0.80		1.210	
				I	

FIG. 3UU

T	r			I I	
59-0152 0 F	266.275				
59-0152	200.275	100.00	uM	-6.890	
03 0132		31.25		12.490	
		9.77		21.950	
		3.05		12.820	
		953.67		7.350	
		298.02	nM	4.290	
		93.13		9.750	
		29.10	nM	4.860	
		9.09	nM	1.320	
		2.84	nM	4.280	
		0.80	nM	4.160	
$  \sim N \downarrow \uparrow \downarrow \uparrow \downarrow$					
59-0153	282.73				
59-0153		100.00		-4.150	
		31.25		-0.390	
			uM	11.120	
		3.05		14.540	
		953.67		9.520	
		298.02		11.570	
			nM	-0.160	
		29.10		1.550	
		9.09		-0.960	
		2.84	nM aM	4.730	
		0.60	пм	5.650	
Ö 🖌					
50.0154	000 740				
59-0154 59-0154	262.312	100.00		0 000	
59-0154				0.290 24.670	
		<u>31.25</u> 9.77		15.680	
		<u>9.77</u> 3.05	uM	14.540	
		953.67		13.170	
		298.02	nM	5.540	
		93.13	nM	2.690	
		29.10	nM	-1.190	
		9.09 2.84	nM	2.460 4.170	
			10344		
1		0.80		1.890	

FIG. 3VV

	<u> </u>					<u> </u>
$\sim$				1		
				1		
Ö L F				Į		
→ FF						
59–0155 F	316.282					
59-0155		100.00		-2.950		
		A REAL PROPERTY AND A REAL	υM	1.900		
			uM	-9.450		
			uM	-0.220		
			nM	0.690		
			nM nM	5.090 - 3.250		
			nм nM	0.530		
			nM nM	- 1.900		
		2.84		9.480		
	h	0.80		-1.130		
N-N-					1	
	333.391					
<u>59-0156</u> 59-0156		100.00	uM	5.840		
59-0156		31.25		2.050		
			uM	7.960		
		3.05		6.890		
		953.67	nM	-0.370		
		298.02	nM	-1.880		
		93.13	nM	- 3.550		
		29.10	nM	- 7.340		
		9.09		-1.590		
		2.84	InM	2.650		
		0.80	INM	2.500		
			1			
Ť	200 760					
59-0157	290.366	100.00	<u> </u>	6.440		
59-0157		100.00	UM	<u>-6.440</u> 14.920		
		<u>31.25</u> 9.77		19.930		
		3.05		11.440		
		953.67		8.570		
		298.02		-7.190		
		93.13		0.080		
		29.10		-0.230		
		9.09	nM	-4.460		
		2.84	nM	2.200		
		0.80	nM	9.920		

## FIG. 3WW

					r	······
$  \sim N_{N_{n}} \widetilde{\Lambda}   \sim  $						
0						
T U						
59-0158	308.337					
59-0158		100.00	иM	5.980		
59-0150		31.25		3.720		
· · · · · · · · · · · · · · · · · · ·			uM	16.140		
		3.05		27.060		
			nM	9.930		
			nM	11.900		
			nM	2.810		
			nM	3.110		
			nM	0.690		
			nM	1.900		
		0.80	nM	7.970		
$  \checkmark \backslash N^{*} \Upsilon ' \Upsilon \rangle =  $						
~ 0	308.337					
59-0159	508.557	400.00		0 700		· · · · · · · · · · · · · · · · · · ·
59-0159		100.00		2.790		
	-	31.25		13.530		
			uM	4.700		
		3.05		2.800		
			nM nM	9.710		
			nM	4.830		
			nM	0.650		
	1	9.09		5.900		
		2.84		6.610		
		0.80		6.250		
		0.00		0.200		
	319.408					
<u>59-0160</u> 59-0160	513.400	100.00		-5.050		
35-0100		31.25		- <u>5.060</u> - <u>3.390</u>		
		9.77		5.300		
		3.05		15.910		
		953.67		6.610		
		298.02		11.380		
		93.13		4.460		
		29.10		3.520		
		9.09		4.700	-	
		2.84		-0.650		
		0.80	nM	7.560		
	I					

FIG. 3XX

				+		
0,						
	707 001					
59-0196 CI 59-0196 CI	323.201					
59-0196		100.00			<u> </u>	<u> </u>
		31.25	uM			
		9.77	uМ			
		3.05	uM			
		953.67	nM			
		298.02	nM			
		93.13	nM	1		
		29.10		1		
		9.09		1		
		9.09	nM		+	
		2.84 0.80			+	
		0.00				<u> </u>
0 ~ ^{CI}						
				1		
	323.201			ļ		L
<u>59-0197</u> 59-0197		100.00	uM			L
		31.25	υM			
		9.77		1		
		3.05				
		953.67		1		
		298.02	nM			
		93.13			-	+
		29.10			+	
		9.09 2.84	<u>InM</u>			
		2.84	nM			
	-	0.80	n <b>M</b>		-	
			i i			
59-0198	261.324					
59-0198		100.00	I UM			
05 0100		31.25	S IUM	-		
		9.77	7			1
		3.05				
		3.00		+	+	+
		953.67				
		298.02 93.13				+
		93.1	pinM		+	
		29.10	) nM			
		9.09	) nM			
		2.84	4 nM			
		0.80	) nM			
0						
59-0199	291.35					
<u>59-0199</u> 59-0199	231.33	100.00				1
72-0122		74.00				
		31.2	MUIC			_ <b>_</b>

FIG. 3YY

r		0.77		T		
		9.77				
		3.05	UM	ļ		
		953.67	nM	ļ		
		298.02	nM 			
		93.13				
		29.10				
		9.09	nM			
		2.84	nM			
		0.80	INM			
H0, 0						
$\sim$						
	342.351					
<u>59-0200</u> 59-0200	542.551	100.00				
59-0200		31.25				
	T	9.77		<u> </u>		
		<u>9.77</u> 3.05		<u> </u>	· · · -	
		953.67	oM	<u> </u>		
		298.02	nM			
		<u>298.02</u> 93.13	nM	<u> </u>		
	····	29.10				
		29.10	nm nM			
		9.09 2.84				
		0.80	nM			
		0.00				
но0						
	774 700					
59-0201	331.328	400.00				
59-0201		100.00				
		31.25	uM	<b></b>		
· · · · · · · · · · · · · · · · · · ·		9.77	uM		ļ	
		3.05			<u> </u>	
		953.67				
	┣	298.02		<u> </u>	<u> </u>	
		93.13				
		29.10	INM			
		9.09	InM			
		2.84 0.80	INM Inv			
		0.80	INM		ļ	
					1	
	200 226					
59-0202 59-0202	300.336	100.00				
<u> </u>		100.00		1		
		31.25		+		
	<u>  </u>	9.77			<u> </u>	
		3.05				
		953.67 298.02 93.13	INM	+		<u> </u>
		298.02	INM	+		
		93.13		+		<u> </u>
		29.10	InM	1		L

FIG. 3ZZ

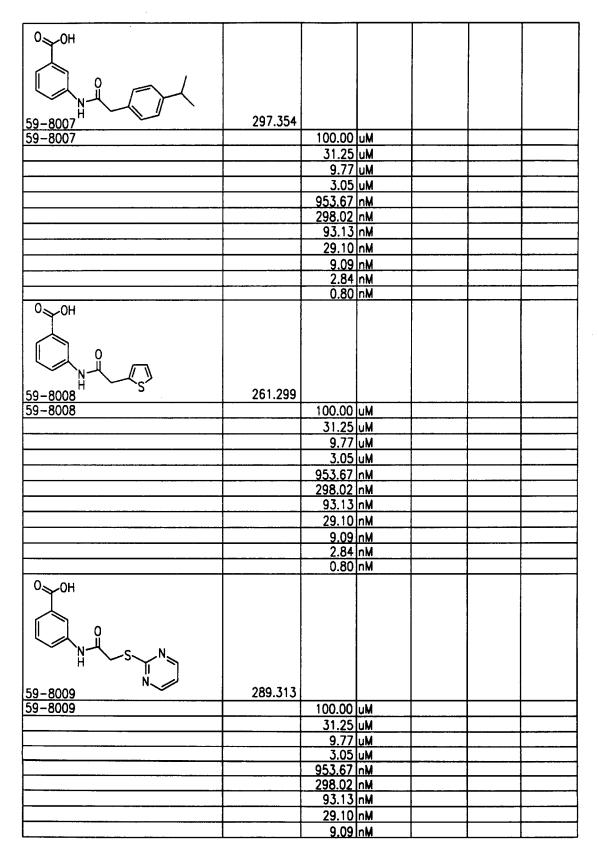
		9.09	o		1	
		2.84	<u>nm</u> oM			
		0.80	nM			
		0.00				
99-0203 0-	292.338					
59-0203		100.00				
		31.25	uM			
		9.77	uM			
		3.05				
		953.67	nM			
		298.02	nM			
		93.13				
		29.10				
		9.09	nM	<u> </u>		ļ
		2.84	nM			
		0.80	nM	ļ		<u> </u>
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
59-0204	344.389					
59-0204		100.00	uМ			
		31.25				
·····		9.77	uM			
		3.05				
		953.67				
		298.02				
		93.13				
		29.10	nM			
		9.09				
		2.84	nM			
		0.80				
$ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						
59-0205	318.782					
59-0205		100.00				
		31.25	uМ			
		9.77	uM			
		3.05	uM			
		953.67 298.02	nM			
		298.02	nM	1		
		93.13	inM			
		29.10	) nM			
		9.09	n M			
		2.84	nM			
		0.80	) nM 🗍	1	1	1

FIG. 3AAA

					. <u> </u>	
N O						
s' H L Lor						
0-	740.000					
59-0206	348.808					
59-0206		100.00			L	
		31.25				
		9.77		ļ		
		3.05			ļ	
		953.67				
		298.02				
		93.13				
		29.10				<u> </u>
		9.09	nM		L	L
		2.84	nM		ļ	
		0.80	nM		Ļ	
N N						
s H Lor						
CI						
59-0207	348.808					
59-0207	0.0000	100.00	u M			
03 0207		31,25	uM			
		9.77				
· · · · · · · · · · · · · · · · · · ·		3.05				
		953.67				
	<u> </u>	298.02	n M		· · · · · · · · · · · · · · · · · · ·	
		93.13	nki		<u> </u>	
		29.10				
		9.09				
		2.84 0.80				
		0.00	nM		<u> </u>	<u> </u>
0						
$ \downarrow \downarrow \rangle N' \downarrow \downarrow 0 + E $						
S H O F						
59-0208	338.307					
59-0208	550.507	100.00				<u>├</u> ────
		31.25			<b> </b>	
		9.77	UM UM			
		<u>9.77</u> 3.05			<u> </u>	
		<u>J.UJ</u>	uM aM			
		953.67 298.02	n <b>M</b>			
		290.02	nM nM			<u> </u>
		93.13	HIM		<u> </u>	
		29.10	n <b>M</b>			
	· • • • • • • • • • • • • • • • • • • •	9.09				
		9.09 2.84 0.80	nM eM		ļ	
L		08.0	nM		1	I

FIG. 3BBB

	·			т		
$\sim$						
$\gamma \gamma$						
	247.297					
59-0209 💙 `OH	247.297					
59-0209		100.00	<u>uM</u>			
		31.25	<u>uM</u>			
		9.77	<u>uM</u>			
		3.05	<u>uM</u>		+	
		953.67 298.02	nM			
		298.02	<u>nM</u>			
		93.13	<u>nM</u>			
		29.10	nM	+	+	
		9.09	nM		+	<u> </u>
		9.09 2.84 0.80	nM		+	
		0.80	nM			<u> </u>
N,						
					1	
∽ ⁻s ˘́ / ⁄~Q						
				1		
59-0210 0	297.376					
59-0210		100.00	uМ			
		31.25	uM			
		9.77	υM			L
· · · · · · · · · · · · · · · · · · ·		3.05	uM			
		953.67	nМ			
		298.02	nM			
		93.13	nM			
		29.10				
		9.09	nM			
		<u>2.84</u> 0.80	nM			
		0.80	nM			<u> </u>
Оурон						
						1
			1			
			1			
50-8000 H	298.342					
59-8000 H 59-8000		100.00	) uM			
		31.25	5 uM			
			7 uM	1		
		3.05	5 uM	-		
		953.67	7InM			
		298.02	2 nM		1	
		298.02 93.13	3InM	-		
	1	29.10	DInM			
	+	9.00	9 nM			
		2.8	4InM			
		0.8	0 nM			
			_			


FIG. 3CCC

				<u> </u>	1	<b>_</b>
О₅у-ОН						1
59-8001 H	255.273					
59-8001		100.00	uM			
		31.25				
		9.77	uM			
		3.05				
		953.67	nM			
		298.02				
		93.13				
		29.10				
		9.09	nM	L		L
		2.84	nM			
		0.80	nM	<u> </u>	<u> </u>	
О₅∽ОН						
59-8002 H OH	302.286					
59-8002		100.00	uM			
00 0002		31.25				
		9.77	uM			•
		3.05	uМ			
		953.67				
		298.02	nM			
		93.13				
		29.10				
		9.09	nM			
		2.84				
		0.80	nM			
О⊸ОН			1			
NH ₂			1			
NH2						
59-8003 H	270.288					
59-8003		100.00	uM	_		
		31.25	uM			
		9.77	'uM			
		3.05	i uM			
		953.67	'nM			
		298.02	nM			
		93.13	SInM			
		29.10	) nM	_		
		9.09	nM InM			
		2.84	l nM			
	L	0.80	) nM		1	

FIG. 3DDD

						·······
О₅∽ОН						
N N N N N N						
59-8004 ^H	331.371					
59-8004		100.00	uM	•		
		31.25	uМ			
		9.77				
		3.05	uM			
		953.67		ļ		
		298.02				
		93.13				
		29.10				
		9.09	nM			L
		2.84	nM nM			
		0.80	I I M			
О₩ОН						
	ļ		ļ			
			1			
N-L J J-U						
н						
59-8005	299.326					
59-8005		100.00	uM			
		31.25	uM			
		9.77				
	<u> </u>	3.05				
		953.67	nM			
		298.02				
		93.13		<u> </u>		
		29.10			ļ	
······································		9.09	nM	ļ		
		2.84	InM	ļ		
		0.80	InM		ļ	
О҄҅Ѡ						
					1	
La por						
NI Jon						
59-8006	327.38					
<u>59-8006</u> 59-8006	1	100.00	uM		1	1
		31.25				
		9.77	'uM			
		<u>3.05</u> 953.67	uM			
		953.67	nM			
		298.02	nM .	ļ	<u> </u>	<u> </u>
	<u> </u>	93.13	5 nM			<u> </u>
	·	29.10	<u>InM</u>			
	+	9.09 2.84	<u>InM</u>			+
			HUUM			
,	1	0.80	) nM	1	<u> </u>	

FIG. 3EEE



## FIG. 3FFF

		2.84	nM			
		0.80	nM			
О₅∽ОН						
N S						
59-8010	261.299					
59-8010		100.00	uM			
		31.25				
		9.77	uM			
		3.05	uM			
		953.67	nM			
		298.02	nM			
		93.13	nM			
		29.10				
		9.09	oM	+	1	
		<u> </u>	nM	1		
		2.84 0.80	nM			
0 011		0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Одон						
					ļ	
N O						
59-8011	285.299					
59-8011	285.299	100.00				
59-8011	285.299	31.25	uM	-		
59-8011	285.299	<u>31.25</u> 9.77	uM uM			
59-8011 59-8011	285.299	<u>31.25</u> 9.77 3.05	uM uM uM			
59-8011	285.299	<u>31.25</u> 9.77 3.05	uM uM uM			
<u>59-8011</u> <u>59-8011</u>		<u>31.25</u> 9.77 3.05	uM uM uM			
<u>59-8011</u> <u>59-8011</u>		31.25 9.77 3.05 953.67 298.02	uM uM uM nM nM			
<u>59-8011</u> <u>59-8011</u>	285.299	31.25 9.77 3.05 953.67 298.02 93.13	uM uM nM nM nM			
<u>59-8011</u> 59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10	uM uM nM nM nM nM			
<u>59-8011</u> <u>59-8011</u>	285.299	31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09	uM uM nM nM nM nM nM			
<u>59-8011</u> <u>59-8011</u>	285.299	31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011	285.299	31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09	uM uM nM nM nM nM nM nM			
59-8011 59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
59-8011		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84	uM uM nM nM nM nM nM nM			
<u>59-8011</u> О-ОН 	285.299	31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80	uM uM nM nM nM nM nM nM			
		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80	uM uM nM nM nM nM nM nM nM			
<u>59-8011</u> О-ОН 		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80 100.00 31.25	uM uM nM nM nM nM nM nM nM uM			
<u>59-8011</u> О-ОН 		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80 100.00 31.25	uM uM nM nM nM nM nM nM nM uM			
<u>59-8011</u> О-ОН 		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80 100.00 31.25 9.77 3.05	uM uM nM nM nM nM nM nM nM uM uM uM			
<u>59-8011</u> О-ОН 		31.25 9.77 3.05 953.67 298.02 93.13 29.10 9.09 2.84 0.80 100.00 31.25	uM uM nM nM nM nM nM nM nM uM uM uM			

## FIG. 3GGG

		93.13	Mo		I	T T
		29.10	nM		+	
		9.09	n M		+	
		2.84	n M			
		0.80	nM			
		0.00		·	<u>+</u>	-
O OH						
	701.764					
59-8013 59-8013	301.364	100.00	<u> </u>			-
59-8013		100.00	UM			
		31.25	UM			
		9.77	uM			
		3.05	uM	<u> </u>		
		953.67	nM			
		298.02	InM		ļ	ļ
		93.13				
		29.10			<u> </u>	
		9.09				
		2.84	nM			
		0.80	nM		ļ	
Оурон						
59-8014 /	377.396					
59-8014		100.00	uМ			
		31.25	uΜ			
		9.77	uM			
		3.05	uM	1		
		953.67	nM			
		298.02	nM			
		93.13	nM			
		29.10	nM			
		9.09	nM			
		2.84	nM		1	
		9.09 2.84 0.80	nM		[	
О⊸ОН						
S OH						
					ł	
						] ]
59-8015 ⁰	285.299					
59-8015 59-8015		100.00	uM	1		
		31.25	UM	1	<u> </u>	
1		91.23 9.77	u Mi			
		100.00 31.25 9.77 3.05	uM uM			

FIG. 3HHH

······································				1	1	1
		953.67	nM			
		298.02	nM			
		93.13	nM			
		29.10	nM			
		9.09				
		2.84	nM			
		0.80	nM			
ОѹОН						
H			1			
.0						
59-8016	285.299			ļ		
59-8016		100.00	uM			
		31.25	uM			
		9.77				
		3.05	uM			
		953.67	nM			
		298.02				
		93.13	nM			
		29.10				
		9.09				
		2.84		1		
		0.80	InM			
		0.00	1			
· · · · · · · · · · · · · · · ·			<u> </u>	1		-
				+		
	<u> </u>	L				

FIG. 3III

		<b></b> -	
CHEMISTRY	CONCENTRATION		ABA-S
N OH			
51-2229			
<u>51–2229</u> 51–2229	100.00	uМ	125.320
	10.00		28.260
210.236	2.00		20.140
	0.40		-9.740
	0.08		-9.710
$\sim$			
92-3052			
92-3052	131.056	uM	-9.28
	13.106		113.80
381.516	2.621		12.61
	0.524		20.25
	0.105		24.45
$\gamma \sim$			
92-3390			
92-3390	145.012	uМ	-8.05
	14.501		31.57
344.798	2.900 0.580		139.68
	0.580		<u>49.82</u> 21.01
<u></u>	0.116	$\square$	21.01
OH			
s s			
<u>92–3552</u> 92–3552			
92-3552	214.326	]u <b>M</b>	108.15

FIG. 4A

	04 477		60.74
0.77.000	21.433		69.74
233.289	4.287		31.59
	0.857	-	39.70
	0.171	_	18.29
F CI O N CI			
92-6353			
92-6353	155.199	uΜ	
02 0000	31.040		204.14
322.166	15.520		154.94
	3.104		28.09
	1.552		
	0.310		3.53
92-8007	181.613	LIM.	-16.65
92-8007	36.323	UN	58.65
275.311	18.161		142.33
275.511	3.632		45.65
	1.816		10.00
	0.363	Н	4.47
<u>92-8215</u> 92-8215	165.123	uM	32.90
	33.025		151.06
302.805	16.512	+	132.29
	3.302	1	59.90
	1.651		
	1.651 0.330		23.34

FIG. 4B

			r	
+ C-N-NH				
92-8258			-	
92-8258	162.102	uM	-	- 16.65
700.447	32.420			<u>157.44</u> 101.04
308.447	16.210		}	39.02
	3.242	H	-	
	1.621 0.324			12.78
	0.324	$\vdash$		12.70
H N N N H F F				
92-8362	454.047			176 70
92-8362	154.647	UM		136.79 137.00
323.318	30.929			65.02
525.516	<u>15.465</u> <u>3.093</u>			17.34
	1.546	$\left  - \right $		(7.54
	0.309			0.41
O H H Br				
92-8372				
92-8372	150.045			63.76
	30.009			134.71
333.234	15.004			92.06
	3.001			31.35
	1.500			17.20
	0.300	1		13.20
92-9183				
32-3103	1		ł	L

FIG. 4C

		لتيت	,	
92-9183	137.568	uM		-22.80
	13.757			16.61
363.457	2.751			101.96
	1.376			
	0.550			<u>58.17</u>
	0.110			38.47
_OH				
OH N ^{OH}				
93-0215				
93-0215	182.957	uM		115.230
	18.296			88.110
273.288	3.659			20.870
2.3.200	0.732			-28.680
	0.146			5.250
	0.140			0.200
N=				
N N-P				
S S C				
93-0399				
93-0399	131.491	ιМ		128.130
	13.149			38.560
380.253	2.630			41.240
	0.526			-4.910
	0.105	<b></b>		3.910
	0.105			
93-0587				
93-0587	222.953	UM		178.130
	22.295			60.410
224.263	4.459	$\vdash$		-0.180
224.203	0.892	┣┨		-3.470
		$\vdash$		-8.460
	0.178	$\vdash$		-0.400
N NH				
│└└└╎╱╱┈╱┝┥╫╺╗╶│				
$  \sim				
07 1707				
<u>93–1327</u> 93–1327	110 701			- 12 000
93-132/	119.764			-42.000
	11.976	$\vdash$		119.130
417.487	2.395	$\vdash$		67.930
	0.479			8.520

FIG. 4D

[ ]	0.096	14.870
N N		
l [ ] →s /=\		
H 🖵		
93-1340	196.576 uM	-31.290
93-1340	19.658	127.340
054 755	19.000	35.710
254.355	3.932 0.786	37.630
		7 290
	0.157	7.280
C		
→-N O		
NSN		
H Br		
<u>93–1474</u> 93–1474		45 110
93-1474	145.940 uM	-45.110
	14.594	110.290
342.607	2.919	35.080
	0.584	109.040
	0.117	40.130
0,		
N-N		
		1
93-1766		
93-1766	144.348 uM	
	14.435	
346.366	2.887	
	0.577	
······································	0.115	
E F		
F		
I T N		
03-1866		
<u>93–1866</u> 93–1866	148 214 JuM	75.940
33-1000	148.214 uM 14.821	173.150
	17.021	

FIG. 4E

3			
850-7377 \ 850-7377			
850-7377	131.062	M	-50.32
201.400	13.106		68.27
381.498	2.621		116.61
	0.524		61.26
	0.105		25.86
HN HN S=N			
850-7413 850-7413			
850-7413	111,964 u	M	-40.44
	11.196		-2.55
446.572	2.239	_	157.01
	0.448	<u> </u>	78.73
	0.090		23.91
850-7449			
850-7449	69.938	M	-42.42
	6.994		73.79
714.923	1.399		112.16
	0.280		75.24
	0.056		26.36

0 ⁻⁵		
<u>93-7485</u> 93-7485		10.01
93-7485	143.099 uM	-42.91
	14.310	28.36
349.409	2.862	153.04 74.27
	0.572	50.28
	0.114	
N S		
<u>93–7991</u> 93–7991	127.367 uM	-16.87
55-7551	12.737	8.95
392.585	2.547	105.51
	0.509	47.53
	0.102	54.26
HN LOOD		
S N		
850-8170	101 617	-33.79
850-8170	101.513 uk 10.151	158.65
492.55	2.030	158.65 126.27 43.05
492.55	0.406	43.05
	0.061	50.00
	0.001	

FIG. 4G

$ \begin{array}{c}                                     $	104.478 ul 10.448		-39.52 51.18
478.57	2.090	4	163.82
	0.418	-	106.06
CHIRAL	0.084	-	73.68
NH OFO OFO NH			
850-8241 850-8241	82.279 ul	4	-2.07
	8.226		181.77
607.685	1.646		118.23
	0.329		66.73
	0.066		36.14
850-8278	130 101		-40.09
850-8278	139.101 ul	VI.	39.00
359.451	2.782	-	182.38
	13.910 2.782 0.556	1	182.38 122.84
	0.111		78.90
S-N 850-8387			

FIG. 4H

850-8387	122.392 uM	-17.06
	12.239	130.31
408.523	2.448	129.75
	0.490	62.69
	0.098	40.74
OH COH		
HOHHO		
HN		
)=N		
S		
850-8459		
850-8459	87.921 uM	-21.13
	8.792	11.30
568.692	1.758	131.92
	0.352	71.13
	0.070	
0 N		
S O		
I		
850-8613		0.5.05
850-8613	151.319 uM	-26.05
720.400	15.132	85.55
330.428	3.026 0.605	381.37
	0.121	<u>255.32</u> 122.93
	0.121	122.93
S. J. J. J. H		
850-8637		
850-8637	85.518 uM	-25.17
	8.552	33.35
584.673	1.710	122.49
	0.342	57.19
	0.068	37.42

FIG. 4I

0. _{N=0}		
J=N S		
850-8889 850-8889	111.493 uM	-17.470
	11.149	142.970
448.457	2.230 0.446	74.150 21.010
	0.089	8.530
N-G		
H NO 850-8964 850-8964		
850-8964	95.156 uM 9.516	-30.92 44.99
525.454	1.903	126.29
	0.381 0.076	49.84 44.99
1	0.070	44.55
N		
- N		
0		
HNO		
$\square$		
) N		
S		
850-9071		
850-9071	109.998 uM 11.000	-24.620 84.120
454.552	2.200	149.030
	0.440	54.540

FIG. 4J

·		
	0.088	23.540
. 6		
H N		
s. Fr"		
HN CI		
000-9100	100.000	15 710
850-9106	100.000 uM	-15.710
100.000	10.000	99.820
499.999	2.000	111.960
	0.400	74.500
	0.080	23.150
$ \alpha - \ell\rangle \rightarrow \ell' \rightarrow 0 + \ell' \rightarrow 0 + \ell' \rightarrow 0$		
H / S		
850-9142 11 3 850-9142	85.596 uM	-14.980
000-3142	8.560	
 504 170	1.712	165.770
584.138	0.342	66.650
		27.780
	0.068	0.670
0 0 S'		
jó l		
850-9179		
850-9179	105.357 uM	-24.630
	10.536	105.200
474.579	2.107	89.280
	0.421	46.110
	0.064	19.160
OH COH		
HO		
850.0010		
850-9212	00.170	
850-9212	92.139 uM	-26.580
	9.214	40.900
542.657	1.843	111.690
	0.369	76.950
	0.074	30.840

FIG. 4K

			-	
CI F F F F 850-9287				
850-9287	147.170	uM		-15.82
	14.717			15.82
339.744	2.943			130.71
	0.589			91.11
	0.118			69.05
850-9356				
850-9356	99.506	uМ		-24.650
	9.951			83.140
502.482	1.990			168.810
	0.396			45.470
	0.080			9.740
+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +				
850-9467				
850-9467	120.646	uМ		- 19.800
	12.065			112.990
	2.413			122.730
	0.483	<b> </b>		<u>43.520</u> 33.140
	0.097			55.140

FIG. 4L

R NH O HN O HN		
\$ 850-9576 850-9576 447.532	111.724 u 11.172 2.234 0.447 0.089	M <u>-27.430</u> 90.560 101.610 44.900 19.930
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	166.019 u 33.204	ім — <u>19.18</u> — 12.60
301.169	16.602 3.320 0.332	<u>148.28</u> -2.23 -3.07
895-0268 895-0268 	128.383 25.677 12.836 2.568 0.257	JM -18.87 40.25 169.96 195.29 14.02

FIG. 4M

S S S S S S S S S S S S S S S S S S S	120.896 u 12.090 2.418 0.484	M	-21.63 25.89 122.10 75.32 39.42
	0.097		
$ \downarrow_{N}  \downarrow_{O}			
895-0857			
895-0857	159.026	uM	-30.46
	15.903		<u>146.74</u> 74.54
314.407	3.181		
	0.636		25.82
	0.127		3.66
J.			
895-0964			
895-0964	162.655	uM	-31.06
	16.265		325.06
307.393	3.253		87.51
	0.651 0.130		40.39 16.03
	0.130		16.03

FIG. 4N

$\begin{array}{c c} & & & \\ H_2N & & & & \\ G & & & \\ G & & & \\ C & & & \\ G & & & \\ C & & $				_	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	ו 1 ד ער ו				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	895-1161	152 625	I MI		- 5 51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	893-1101				109.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	327.602				56.06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N_N_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	895-1420 H				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		220.965	uМ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					110.90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	226.279			L.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.884			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.177		<u> </u>	20.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	805-1670	190.010			_ 30 36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	032-10/3	18 001	U WI		
$ \begin{array}{c} 0.724 \\ 0.145 \\ \hline N_N \\ H \\ N_N \\ (H \\ H \\ (H \\ H \\ N_N \\ (H \\ H \\ (H \\ H \\ N_N \\ (H \\ H \\ (H $	276 383				
0.145 0.145 0.44 0.145 0.44 0.44 0.44 0.44 0.44 0.5 0.44 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	270.000		$\square$		
<u>И И И И И И И И И И И И И И И И И И И </u>		0.145		F	0.44
<u>895–1691</u> 182.992 uM –16.29					
<u>895–1691</u> 182.992 uM –16.29					
<u>895–1691</u> 182.992 uM –16.29	N _{-N} ≻N,				
<u>895–1691</u> 182.992 uM –16.29	H N				
895-1691 182.992 uM -16.29					
895-1691 182.992 uM -16.29					
895-1691 182,992 uM -16.29	805-1601				
18.292 273 34 3 658 105.52 50.84 105.70	895-1691	182 992	uM	<u>}</u>	-16.29
273 34 3 658 105 70		18.292		F	50.84
	273.34	3.658		F	105.70

FIG. 40

	0.732	60.23
	0.146	23.42
	0.110	
N-N H N		
N-N 1		
H N		
N N		
895-1754	104 205	-31.44
895-1754	194.295 uM	
	19.430	132.78
257.341	3.886	75.39
	0.777	39.30
	0.155	16.19
N.		
895-1888		
895-1888	212.504 uM	-33.65
	21.250	29.75
275.296	4 250	29./3
235.286	4.250	148.84
	0.850	73.77
	0.170	28.14
•		
Ň-Ŋ Ś		
н		
895-2474		
895-2474	184.952 uN	-20.74
	18.495	128.69
270.335	3.699	66.37
270.333	0.740	43.27
	0.148	19.44
, OH		
I in al		
TLAND		
-n		
895-2475		
055-2475	162.159 uM	265.41
895-2475	16 316	287.86
	16.216	
308.337	3.243	227.34
	0.649	65.40
	0.130	28.96

FIG. 4P

<u>895–2544</u> 895–2544	189.186	uM	17.53
055-25++	18.919		136.50
264.284	3.784		59.15
	0.757		24.75
	0.151		11.86
895-3113			
895-3113	160.067	uM	-22.22
312.372	16.007 3.201		<u>224.52</u> 68.46
512.372	0.640		43.36
	0.128		30.56
	01120		00.00
895-3306			
895-3306	172.170	uM	-23.24
	17.217		38.63
290.41	3.443		333.10
	0.689		164.63
	0.136		64.33
H No. 10			1
HN', /			
895-3810			
895-3810	196.973	uM	89.79
	19.897		106.75 73.78
251.289	3.979 0.796	<b>  </b>	33.45
	0.750		16.86
	0.133		<u> </u>

FIG. 4Q

		<b></b>	· · · · · · · · · · · · · · · · · · ·
NH ₂			
895-3846 ^{Cl}			
895-3846	193.267	uМ	-21.41
050 700	19.327		13.40
258.708	3.865		114.46
	<u>0.773</u> 0.155		<u>52.12</u> 38.29
	0.155		
P05 4642 OH			
093-4042	176 477		6.07
895-4642	176.473	UM	<u>6.97</u> 383.99
283.331	<u>17.647</u> 3.529		447.51
203.001	0.706		304.86
	0.141		100.45
<u> </u>	0.1.11		
0			
NH ₂ Ö			
895-4843			L
895-4843	159.581	uМ	-17.18
717 710	15.958	┝─┥	24.54
313.312	3.192	$\vdash$	100.12
	0.638	<b>  </b>	60.37
······	0.120	$\vdash$	27.00
s-s			
895-5185			
895-5185	162.433	UM	<u>- 6.47</u> 213.42
307.821	<u>16.243</u> 3.249	$\left  - \right $	107.83
507.821	0.650	$\vdash$	46.75
	0.030		18.27
	0.130		L 10.27

FIG. 4R

Br j			
T CI			
895-5960 895-5960	103.348		-10.03
692-2900	103.348		156.04
483.796	2.067		62.07
	0.413		34.47
н	0.083		7.24
s			
│ Мн │ │			
<u>895-6353</u> 895-6353	167.555	u <b>M</b>	-10.45
	16.755		21.59
298.408	3.351		101.77
	0.670 0.134		<u>54.91</u> 24.15
	0.134		24.15
895-6643			
895-6643	145.862	υM	100.09
	14.586		74.25
342.786	2.917 0.583		16.86 -0.89
	0.005		-7.94
	0.177	-1	
on s			
0 - S			
895-7828			
895-7828 895-7828	184.973	uM	-32.44
070 21	18.497 3.699		-29.24 85.15
270.31	0.740		125.64
	0.148		-30.80

FIG. 4S

895-7985		
895-7985	223.935 uM	122.070
	22.394	3.900
223.279	4.479	-7.790
	0.896	5.520
	0.179	-2.270
0~0-		
895-7997		
895-7997	176.461 uM	
	17.646	
283.349	3.529	
	0.706	
	0.141	
Br NH N= Br		
<u>895-8053</u> 895-8053		
895-8053	134.398 uM	
770.07	13.440 2.666	
372.03	0.538	
	0.108	
895-8137		
<u>895-8137</u> 895-8137	169.326 uM	
		L

FIG. 4T

	16.933	
295.288	3.387	
	0.677	
	0.135	
·		
895-8185		
895-8185	219.057 uM	
	21.906	
228.251	4.361	
220.231	0.876	
	0.175	
<u> </u>	0.175	
Br		
N LO		
The second se		
<u>895–8286</u> 895–8286	142.765 uM	142 210
090-0200	14.277	142.210
750.005		40.390
350.225	2.855	17.850
	0.571	-10.890
	0.114	6.580
Q, H, CI		
N V		
895-8383		
895-8383	191.774 uM	-44.020
	19.177	76.480
260.724	3.835	135.940
	0.767	77.030
	0.153	37.630
	0.100	

FIG. 4U

895-8862 895-8862 301.43	165.876 16.588 3.318 0.664	<u>M</u>	54.72 159.21 113.97 41.96
	0.133		38.28
CI CI 00 895-9683			
895-9683	113.552	uM	-20.67
440.326	11.355		201.56 12.55
440.326	<u>2.271</u> 0.454		0.62
	0.091		- 0.69
N-N O			
895-9896			
895-9896	178.349	υM	-29.16
	17.835		0.62
280.349	3.567		182.84
	0.713	┝─┤	118.55
	0.143		42.75

FIG. 4V

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			<b></b>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H N-N H			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	896-0122	190.610	uM	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	262 311			56.90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202.01	0.762		19.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sim \sim $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	896-0246	154.888	uM	-17.57
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15.489		34.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	322.81			102.03
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & &$			<u>  </u>	46.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u></u>	0.124		20.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	н			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O N N			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N N			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s s			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	896-0255	127.000		17.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	896-0255	12.300		67.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	406.50		<u>†</u>	168.78
$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$				
N, N, H,		0.098		49.97
N, N, H,			<b></b>	<u> </u>
N, N, H,				
N, N, H,	NH(_)			
N, N, H,	0 s			
N H H H Cl 896-0345 896-0345 107.532 uM -18.86 10.753 77.80				
CI 896-0345 896-0345 107.532 uM -18.86 10.753 77.80	N-4 H			
10.753				
10.753				
10.753	T			
10.753	CI CI	ļ		
10.753	896-0345	107 532	M	-18.86
	840-0345	107.552		77.80
			· · · ·	·····

FIG. 4W

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.94 5.12 7.18 7.18 5.90 7.23 5.90 7.23 5.25 3.35 3.25
0.086 0.086 37 0.086 37 0.086 37 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.08	<u>5.90</u> 7.23 5.25 5.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.90 7.23 5.25 5.35
0     0       0     0       0     0       896-0390     128.718 uM       12.872     8       388.445     2.574       0.515     7       0.103     28	7.23 ).25 3.35
896-0390         128.718 uM         -16           12.872         8           388.445         2.574         210           0.515         7           0.103         28	7.23 ).25 3.35
896-0390         128.718 uM         -16           12.872         8           388.445         2.574         210           0.515         7           0.103         28	7.23 ).25 3.35
12.872         8           388.445         2.574         210           0.515         7         28           0.103         28         28	7.23 ).25 3.35
388.445         2.574         210           0.515         7;           0.103         28	).25 3.35
0.515 0.103 28	3.35
0.103 28	
	3.25
	- 1
896-0535	
896-0535 132.810 uM -10	).41
	3.84
	0.80
	2.12
0.106 3	5.72
	- -
896-0554	
896-0554 121.499 uM -1	5.32
12.150 10	5.48
411.527 2.430 11	5.43
0.486 5	3.88 7.03
0.097	7.03

FIG. 4X

ci — ( _ ) — ( _ ) — (		
O HN		
<u>896-0686</u> 896-0686	101 774 14	10.90
090-0000	191.774 uM 19.177	-19.80
260.724	3.835	176.04 115.02
200.724	0.767	97.67
	0.153	25.27
0. N	000	20.27
CI. THE		
H H		
, , , , , , , , , , , , , , , , , , ,		
896-0692		
896-0692	131.269 uM	22.78
	13.127	149.23
380.897	2.625	78.33
	0.525	51.06
	0.105	46.12
The second se		
H H		
→ ³ √ ↓		
NH		
896-0719		
896-0719	91.950 uM	-6.49
	9.195	187.43
543.774	1.839	127.43
	0.366	50.04
	0.074	36.16
896-0773		
896-0773	147.228 uM	-13.94
	14.723	-13.94 175.33
339.609	2.945 0.589	221.91 52.48
	0.589	52.48
	0.118	32.99

FIG. 4Y

		· · · · · · · · · · · · · · · · · · ·	_	
0				
NH				
0				
SNH				
896-0819				
896-0819		124.219 uM		
	402.516	12.422	70.0	
· · · · · · · · · · · · · · · · · · ·	+UZ.J10	0.497	82.0	51
		0.099	49.0	6
NH Q				
N=0				
896-0853		157.546 uN	-27.0	
896-0853		157.546 UN	75.3	
	317.367	3.151	208.6	59
		0.630	33.0	8
		0.126		53
NH Q				
s ~ ~				
896-0921		174 507 1		0
896-0921		174.583 uk 17.458	<u>4</u> –19.5 44.0	
	266.397	3.492	103.2	3
		0.698	54.0	and the second se
L		0.140	23.8	6

FIG. 4Z

NH NH N N N N N N N N N N N N N N N N N	184.314 ul 18.431	M -16.20 153.61
271.276	3.686	184.53
	0.737	79.16
	0.147	32.61
NH-OK		
896-0959		
896-0959 896-0959	103.796 ul	
461.703	10.380	<u>102.48</u> 61.61
	0.415	63.56
	0.083	48.27
$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$		
896-1201		
896-1201	106.343 u	M -45.70
461.496	10.834	<u>92.57</u> 191.83
+01.+30	0.433	47.22
	0.087	58.25

FIG. 4AA

896-1301				
896-1301		<u>97.922</u> 9.792	UM	-24.32 102.49
· · · · · · · · · · · · · · · · · · ·	510.612	1.958		139.28
		0.392		97.89
		0.078		23.45
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
896-1349		115 007		70.02
896–1349		115.883 11.588	UM	-39.92 55.08
· · · · · · · · · · · · · · · · · · ·	431.47	2.318		122.68
		0.464 0.093		67.25
F = F $F = N$ $F = N$ $F = N$ $F = N$		0.055		
l F				
<u>896–1362</u> 896–1362		142.749	uM	1,073.91
	760.000	14.275		1,082.17
	360.266	2.855 0.571	┢╌┥	884.71 -9.82
<b></b>		0.114	<u>}</u>	-20.37

FIG. 4BB

10

35

45

# METHODS FOR TREATING BONE DEFICIT CONDITIONS WITH BENZOTHIAZOLE

This is a continuation of U.S. application Ser. No. 08/735,881 filed Oct. 23, 1986, now abandoned.

#### TECHNICAL FIELD

The invention relates to compositions and methods for use in limiting undesired bone loss in a vertebrate at risk of such bone loss, in treating conditions that are characterized by undesired bone loss or by the need for bone growth, in treating fractures, and in treating cartilage disorders. More specifically, the invention concerns the use of specific classes of compounds identified or characterized by a high throughput screening assay.

# BACKGROUND ART

Bone is not a static tissue. It is subject to constant breakdown and resynthesis in a complex process mediated 20 by osteoblasts, which produce new bone, and osteoclasts, which destroy bone. The activities of these cells are regulated by a large number of cytokines and growth factors, many of which have now been identified and cloned. Mundy has described the current knowledge related to these factors (Mundy, G. R. Clin Orthop 324:24-28, 1996; Mundy, G. R. J Bone Miner Res 8:S505-10, 1993).

Although there is a great deal of information available on the factors which influence the breakdown and resorption of bone, information on growth factors which stimulate the 30 formation of new bone is more limited. Investigators have searched for sources of such activities, and have found that bone tissue itself is a storehouse for factors which have the capacity for stimulating bone cells. Thus, extracts of bovine bone tissue obtained from slaughterhouses contain not only structural proteins which are responsible for maintaining the structural integrity of bone, but also biologically active bone growth factors which can stimulate bone cells to proliferate. Among these latter factors are transforming growth factor  $\beta$ , the heparin-binding growth factors (acidic and basic fibro-  $_{40}$ blast growth factor), the insulin-like growth factors (insulinlike growth factor I and insulin-like growth factor II), and a recently described family of proteins called bone morphogenetic proteins (BMPs). All of these growth factors have effects on other types of cells, as well as on bone cells.

The BMPs are novel factors in the extended transforming growth factor  $\beta$  superfamily. They were first identified by Wozney J. et al. Science (1988) 242:1528-34, using gene cloning techniques, following earlier descriptions characterizing the biological activity in extracts of demineralized 50 bone (Urist M. Science (1965) 150:893-99). Recombinant BMP2 and BMP4 can induce new bone formation when they are injected locally into the subcutaneous tissues of rats (Wozney J. Molec Reprod Dev (1992) 32:160-67). These factors are expressed by normal osteoblasts as they 55 differentiate, and have been shown to stimulate osteoblast differentiation and bone nodule formation in vitro as well as bone formation in vivo (Harris S. et al. J. Bone Miner Res (1994) 9:855–63). This latter property suggests potential bone loss.

The cells which are responsible for forming bone are osteoblasts. As osteoblasts differentiate from precursors to mature bone-forming cells, they express and secrete a number of enzymes and structural proteins of the bone matrix, 65 limiting or treating bone deficit conditions, and for other including Type-I collagen, osteocalcin, osteopontin and alkaline phosphatase (Stein G. et al. Curr Opin Cell Biol

(1990) 2:1018-27; Harris S. et al. (1994), supra). They also synthesize a number of growth regulatory peptides which are stored in the bone matrix, and are presumably responsible for normal bone formation. These growth regulatory peptides include the BMPs (Harris S. et al. (1994), supra). In studies of primary cultures of fetal rat calvarial osteoblasts, BMPs 1, 2, 3, 4, and 6 are expressed by cultured cells prior to the formation of mineralized bone nodules (Harris S. et al. (1994), supra). Like alkaline phosphatase, osteocalcin and osteopontin, the BMPs are expressed by cultured osteoblasts as they proliferate and differentiate.

Although the BMPs are potent stimulators of bone formation in vitro and in vivo, there are disadvantages to their use as therapeutic agents to enhance bone healing. Receptors ¹⁵ for the bone morphogenetic proteins have been identified in many tissues, and the BMPs themselves are expressed in a large variety of tissues in specific temporal and spatial patterns. This suggests that BMPs may have effects on many tissues other than bone, potentially limiting their usefulness as therapeutic agents when administered systemically. Moreover, since they are peptides, they would have to be administered by injection. These disadvantages impose severe limitations to the development of BMPs as therapeutic agents.

There is a plethora of conditions which are characterized by the need to enhance bone formation. Perhaps the most obvious is the case of bone fractures, where it would be desirable to stimulate bone growth and to hasten and complete bone repair. Agents that enhance bone formation would also be useful in facial reconstruction procedures. Other bone deficit conditions include bone segmental defects, periodontal disease, metastatic bone disease, osteolytic bone disease and conditions where connective tissue repair would be beneficial, such as healing or regeneration of cartilage defects or injury. Also of great significance is the chronic condition of osteoporosis, including age-related osteoporosis and osteoporosis associated with post-menopausal hormone status. Other conditions characterized by the need for bone growth include primary and secondary hyperparathyroidism, disuse osteoporosis, diabetes-related osteoporosis, and glucocorticoid-related osteoporosis. In addition, or alternatively, the compounds of the present invention may modulate metabolism, proliferation and/or differentiation of normal or aberrant cells or tissues.

There are currently no satisfactory pharmaceutical approaches to managing any of these conditions. Bone fractures are still treated exclusively using casts, braces, anchoring devices and other strictly mechanical means. Further bone deterioration associated with post-menopausal osteoporosis has been decreased or prevented with estrogens or bisphosphonates.

U.S. Pat. No. 5,280,040 discloses a class of compounds which are 3,4-diaryl chromans. These compounds can be considered derivatives of 2,3,4 triphenyl butanol, where the hydroxy at the 1-position forms an ether with the ortho position of the phenyl group substituted at the 4-position of the butanol. The parent 3,4-diaryl chromans do not contain nitrogen atoms in the aromatic moieties or their linkers. A usefulness as therapeutic agents in diseases which result in ₆₀ preferred compound, centchroman, contains a nitrogen substituent only in one of the substituents on a phenyl moiety. These compounds are disclosed in the '040 patent as useful in the treatment of osteoporosis.

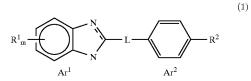
> The present invention discloses compounds useful for uses that should be apparent to those skilled in the art from the teachings herein.

35

40

45

55


60

# DISCLOSURE OF THE INVENTION

The invention provides compounds that can be administered as ordinary pharmaceuticals and have the metabolic effect of enhancing bone growth. The compounds of the invention can be identified using an assay for their ability to activate control elements associated with these factors. Thus, the invention is directed to methods and compositions for stimulating the growth of skeletal (bone) tissue, which methods and compositions use, as active ingredients, compounds wherein two aromatic systems are coupled so as to be spaced apart from each other by about 1.5 to about 15 Angstroms. The thus-linked systems (including the linker coupling them) generally include at least one nitrogen atom.

Therefore, the compounds useful in the invention can be 15 described as having the formula Ar¹-linker-Ar², wherein each of Ar¹ and Ar² is independently an aromatic system and the linker portion of the formula spaces  $Ar^1$  and  $Ar^2$  apart by a distance of approximately 1.5-15 Angstroms. Ar¹, Ar² and the linker may optionally be substituted with non interfering substituents. In the useful compounds, there is generally at least one nitrogen atom in either Ar¹, Ar² and/or the linker, independent of any substituents thereon. Preferably, the compounds of the invention contain at least one additional heteroatom selected from the group consisting of N, S and 25 O, independent of any substituent.

Thus, in one aspect, the invention is directed to a method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption, which method 30 comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula:



wherein

each R¹ and R² is independently a non-interfering substituent:

m is an integer of 0-4;

the dotted line represents an optional  $\pi$  bond; and

L is a flexible non-conjugating linker.

In other aspects, the invention relates to pharmaceutical compositions for use in the method.

# BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 gives a schematic representation of the compounds used as active ingredients in the methods of the invention.

FIG. 2 shows the dose response curve for a positive control compound, designated 59-0008.

FIGS. 3 and 4 show illustrative compounds of the invention and the results obtained with them in an in vitro test.

### MODES OF CARRYING OUT THE INVENTION

A rapid throughput screening test for compounds capable of stimulating expression of a reporter gene linked to a BMP promoter (a surrogate for the production of bone morphogenetic factors that are endogenously produced) is described 65 invention include: repair of bone defects and deficiencies, in U.S. application Ser. No. 08/458,434, filed Jun. 2, 1995, the contents of which are incorporated herein by reference.

This assay is also described as a portion of a study of immortalized murine osteoblasts (derived from a mouse expressing a transgene composed of a BMP2 promoter driving expression of T-antigen) in Ghosh-Choudhery, N. et al. Endocrinology (1996) 137:331-39. In this study, the immortalized cells were stably transfected with a plasmid containing a luciferase reporter gene driven by a mouse BMP2 promoter (-2736/114 bp), and responded in a dosedependent manner to recombinant human BMP2.

Briefly, the assay utilizes cells transformed permanently or transiently with constructs in which the promoter of a bone morphogenetic protein, specifically BMP2 or BMP4, is coupled to a reporter gene, typically luciferase. These transformed cells are then evaluated for the production of the reporter gene product; compounds that activate the BMP promoter will drive production of the reporter protein, which can be readily assayed. Over 40,000 compounds have been subjected to this rapid screening technique, and only a very small percentage are able to elicit a level of production of luciferase 5-fold greater than that produced by vehicle. Compounds that activate the BMP promoter share certain structural characteristics not present in inactive compounds. The active compounds ("BMP promoter-active compounds" or "active compounds") are useful in promoting bone or cartilage growth, and thus in the treatment of vertebrates in need of bone or cartilage growth.

BMP promoter-active compounds can be examined in a variety of other assays that test specificity and toxicity. For instance, non-BMP promoters or response elements can be linked to a reporter gene and inserted into an appropriate host cell. Cytotoxicity can be determined by visual or microscopic examination of BMP promoter- and/or non-BMP promoter-reporter gene-containing cells, for instance. Alternatively, nucleic acid and/or protein synthesis by the cells can be monitored. For in vivo assays, tissues may be removed and examined visually or microscopically, and optionally examined in conjunction with dyes or stains that facilitate histologic examination. In assessing in vivo assay results, it may also be useful to examine biodistribution of the test compound, using conventional medicinal chemistry/ animal model techniques.

As used herein, "limit" or "limiting" and "treat" or "treatment" are interchangeable terms. The terms include a postponement of development of bone deficit symptoms and/or a reduction in the severity of such symptoms that will or are expected to develop. The terms further include ameliorating existing bone or cartilage deficit symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, preventing or reversing bone resorption and/or encouraging bone growth. Thus, the terms denote that a beneficial result has been conferred on a vertebrate subject with a cartilage, bone or skeletal deficit, or with the potential to develop such deficit.

By "bone deficit" is meant an imbalance in the ratio of bone formation to bone resorption, such that, if unmodified, the subject will exhibit less bone than desirable, or the subject's bones will be less intact and coherent than desired. Bone deficit may also result from fracture, from surgical intervention or from dental or periodontal disease. By "cartilage defect" is meant damaged cartilage, less cartilage than desired, or cartilage that is less intact and coherent than desired.

Representative uses of the compounds of the present such as those occuring in closed, open and non-union fractures; prophylactic use in closed and open fracture

reduction; promotion of bone healing in plastic surgery; stimulation of bone ingrowth into non-cemented prosthetic joints and dental implants; elevation of peak bone mass in pre-menopausal women; treatment of growth deficiencies; treatment of peridontal disease and defects, and other tooth repair processes; increase in bone formation during distraction osteogenesis; and treatment of other skeletal disorders, such as age-related osteoporosis, post-menopausal osteoporosis, glucocorticoid-induced osteoporosis or disuse osteoporosis and arthritis. The compounds of the present invention can also be useful in repair of congenital, traumainduced or surgical resection of bone (for instance, for cancer treatment), and in cosmetic surgery. Further, the compounds of the present invention can be used for limiting or treating cartilage defects or disorders, and may be useful 15 in wound healing or tissue repair.

Bone or cartilage deficit or defect can be treated in vertebrate subjects by administering compounds of the invention which have been identified through suitable screening assays and which exhibit certain structural char-20 acteristics. The compositions of the invention may be administered systemically or locally. For systemic use, the compounds herein are formulated for parenteral (e.g., intravenous, subcutaneous, intramuscular, intraperitoneal, intranasal or transdermal) or enteral (e.g., oral or rectal) 25 delivery according to conventional methods. Intravenous administration will be by a series of injections or by continuous infusion over an extended period. Administration by injection or other routes of discretely spaced administration will generally be performed at intervals ranging from 30 weekly to once to three times daily. Alternatively, the compounds disclosed herein may be administered in a cyclical manner (administration of disclosed compound; followed by no administration; followed by administration of disclosed compound, and the like). Treatment will con- 35 tinue until the desired outcome is achieved. In general, pharmaceutical formulations will include a compound of the present invention in combination with a pharmaceutically acceptable vehicle, such as saline, buffered saline, 5% dextrose in water, borate-buffered saline containing trace 40 metals or the like. Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, lubricants, fillers, stabilizers, etc. Methods of formulation are well known in the art and are disclosed, for example, in 45 Remington's Pharmaceutical Sciences, Gennaro, ed., Mack Publishing Co., Easton Pa., 1990, which is incorporated herein by reference. Pharmaceutical compositions for use within the present invention can be in the form of sterile, non-pyrogenic liquid solutions or suspensions, coated 50 capsules, suppositories, lyophilized powders, transdermal patches or other forms known in the art. Local administration may be by injection at the site of injury or defect, or by insertion or attachment of a solid carrier at the site, or by direct, topical application of a viscous liquid. For local 55 administration, the delivery vehicle preferably provides a matrix for the growing bone or cartilage, and more preferably is a vehicle that can be absorbed by the subject without adverse effects.

Delivery of compounds herein to wound sites may be 60 enhanced by the use of controlled-release compositions, such as those described in pending U.S. patent application Ser. No. 07/871,246 (corresponding to WIPO publication WO 93/20859, which is incorporated herein by reference in its entirety). Films of this type are particularly useful as 65 coatings for prosthetic devices and surgical implants. The films may, for example, be wrapped around the outer sur-

faces of surgical screws, rods, pins, plates and the like. Implantable devices of this type are routinely used in orthopedic surgery. The films can also be used to coat bone filling materials, such as hydroxyapatite blocks, demineralized bone matrix plugs, collagen matrices and the like. In general, a film or device as described herein is applied to the bone at the fracture site. Application is generally by implantation into the bone or attachment to the surface using standard surgical procedures.

In addition to the copolymers and carriers noted above, the biodegradable films and matrices may include other active or inert components. Of particular interest are those agents that promote tissue growth or infiltration, such as growth factors. Exemplary growth factors for this purpose include epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factors (TGFs), parathyroid hormone (PTH), leukemia inhibitory factor (LIF), and insulin-like growth factors (IGFs). Agents that promote bone growth, such as bone morphogenetic proteins (U.S. Pat. No. 4,761, 471; PCT Publication WO 90/11366), osteogenin (Sampath et al. Proc. Natl. Acad. Sci. USA (1987) 84:7109-13) and NaF (Tencer et al. J. Biomed. Mat. Res. (1989) 23:571-89) are also preferred. Biodegradable films or matrices include calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyanhydrides, bone or dermal collagen, pure proteins, extracellular matrix components and combinations thereof. Such biodegradable materials may be used in combination with non-biodegradable materials, to provide desired mechanical, cosmetic or tissue or matrix interface properties.

Alternative methods for delivery of compounds of the present invention include use of ALZET osmotic minipumps (Alza Corp., Palo Alto, Calif.); sustained release matrix materials such as those disclosed in Wang et al. (PCT Publication WO 90/11366); electrically charged dextran beads, as disclosed in Bao et al. (PCT Publication WO 92/03125); collagen-based delivery systems, for example, as disclosed in Ksander et al. Ann. Surg. (1990) 211(3):288–94; methylcellulose gel systems, as disclosed in Beck et al. J. Bone Min. Res. (1991) 6(11):1257–65; and alginate-based systems, as disclosed in Edelman et al. Biomaterials (1991) 12:619–26. Other methods well known in the art for sustained local delivery in bone include porous coated metal protheses that can be impregnated and solid plastic rods with therapeutic compositions incorporated within them.

The compounds of the present invention may also be used in conjunction with agents that inhibit bone resorption. Antiresorptive agents, such as estrogen, bisphosphonates and calcitonin, are preferred for this purpose. More specifically, the compounds disclosed herein may be administered for a period of time (for instance, months to years) sufficient to obtain correction of a bone deficit condition. Once the bone deficit condition has been corrected, the vertebrate can be administered an anti-resorptive compound to maintain the corrected bone condition. Alternatively, the compounds disclosed herein may be administered with an anti-resorptive compound in a cyclical manner (administration of disclosed compound, followed by antiresorptive, followed by disclosed compound, and the like).

In additional formulations, conventional preparations such as those described below may be used.

Aqueous suspensions may contain the active ingredient in admixture with pharmacologically acceptable excipients, comprising suspending agents, such as methyl cellulose; and wetting agents, such as lecithin, lysolethicin or long-chain

35

55

fatty alcohols. The said aqueous suspensions may also contain preservatives, coloring agents, flavoring agents and sweetening agents in accordance with industry standards.

Preparations for topical and local application comprise aerosol sprays, lotions, gels and ointments in pharmaceutically appropriate vehicles which may comprise lower aliphatic alcohols, polyglycols such as glycerol, polyethylene glycol, esters of fatty acids, oils and fats, and silicones. The preparations may further comprise antioxidants, such as ascorbic acid or tocopherol, and preservatives, such as 10 contemplated. Such uses would include limitation or treatp-hydroxybenzoic acid esters.

Parenteral preparations comprise particularly sterile or sterilized products. Injectable compositions may be provided containing the active compound and any of the well known injectable carriers. These may contain salts for regulating the osmotic pressure.

If desired, the osteogenic agents can be incorporated into liposomes by any of the reported methods of preparing liposomes for use in treating various pathogenic conditions. The present compositions may utilize the compounds noted above incorporated in liposomes in order to direct these 20 compounds to macrophages, monocytes, other cells and tissues and organs which take up the liposomal composition. The liposome-incorporated compounds of the invention can be utilized by parenteral administration, to allow for the efficacious use of lower doses of the compounds. Ligands 25 may also be incorporated to further focus the specificity of the liposomes.

Suitable conventional methods of liposome preparation include, but are not limited to, those disclosed by Bangham, Biochim Biophys Acta (1979) 557:9–23, Szoka, F. et al. Proc Natl Acad Sci USA (1978) 75:4194-4198, Mayhew, E. et al. Biochim Biophys (1984) 775:169175, Kim, S. et al. Biochim Biophys Acta (1983) 728:339:348, and Mayer, et al. Biochim Biophys Acta (1986) 858:161-168.

The liposomes may be made from the present compounds in combination with any of the conventional synthetic or natural phospholipid liposome materials including phospholipids from natural sources such as egg, plant or animal phosphatidylcholine, sources such as 40 phosphatidylethanolamine, phosphatidylglycerol, sphingomyelin, phosphatidylserine, or phosphatidylinositol. Synthetic phospholipids that may also be used, include, but are not limited to: dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidycholine, and the correspond- 45 ing synthetic phosphatidylethanolamines and phosphatidylglycerols. Cholesterol or other sterols, cholesterol hemisuccinate, glycolipids, cerebrosides, fatty acids, gangliosides, sphingolipids, 1,2-bis(oleovloxv)-3-(trimethvl ammonio) propane (DOTAP), N-[1-(2,3-dioleoyl) propyl- 50 composition is that amount which produces a statistically N,N,N-trimethylammonium chloride (DOTMA), and other cationic lipids may be incorporated into the liposomes, as is known to those skilled in the art. The relative amounts of phospholipid and additives used in the liposomes may be varied if desired. The preferred ranges are from about 60 to 90 mole percent of the phospholipid; cholesterol, cholesterol hemisuccinate, fatty acids or cationic lipids may be used in amounts ranging from 0 to 50 mole percent. The amounts of the present compounds incorporated into the lipid layer of liposomes can be varied with the concentration of their lipids ranging from about 0.01 to about 50 mole percent.

Using conventional methods, approximately 20 to 30% of the compound present in solution can be entrapped in liposomes; thus, approximately 70 to 80% of the active compound is wasted. In contrast, where the compound is incorporated into liposomes, virtually all of the compound is 65 incorporated into the liposome, and essentially none of the active compound is wasted.

The liposomes with the above formulations may be made still more specific for their intended targets with the incorporation of monoclonal antibodies or other ligands specific for a target. For example, monoclonal antibodies to the BMP receptor may be incorporated into the liposome by linkage to phosphatidylethanolamine (PE) incorporated into the liposome by the method of Leserman, L. et al. Nature (1980) 288:602-604.

Veterinary uses of the disclosed compounds are also ment of bone or cartilage deficits or defects in domestic animals, livestock and thoroughbred horses. The compounds described herein can also modify a target tissue or organ environment, so as to attract bone-forming cells to an environment in need of such cells.

The compounds of the present invention may also be used to stimulate growth of bone-forming cells or their precursors, or to induce differentiation of bone-forming cell precursors, either in vitro or ex vivo. As used herein, the term "precursor cell" refers to a cell that is committed to a differentiation pathway, but that generally does not express markers or function as a mature, fully differentiated cell. As used herein, the term "mesenchymal cells" or "mesenchymal stem cells" refers to pluripotent progenitor cells that are capable of dividing many times, and whose progeny will give rise to skeletal tissues, including cartilage, bone, tendon, ligament, marrow stroma and connective tissue (see A. Caplan J. Orthop. Res. (1991) 9:641-50). As used herein, the term "osteogenic cells" includes osteoblasts and osteoblast precursor cells. More particularly, the disclosed com-A. D. et al. J Mol Biol (1965) 23:238–252, Olson, F. et al. 30 pounds are useful for stimulating a cell population containing marrow mesenchymal cells, thereby increasing the number of osteogenic cells in that cell population. In a preferred method, hematopoietic cells are removed from the cell population, either before or after stimulation with the disclosed compounds. Through practice of such methods, osteogenic cells may be expanded. The expanded osteogenic cells can be infused (or reinfused) into a vertebrate subject in need thereof. For instance, a subject's own mesenchymal stem cells can be exposed to compounds of the present invention ex vivo, and the resultant osteogenic cells could be infused or directed to a desired site within the subject, where further proliferation and/or differentiation of the osteogenic cells can occur without immunorejection. Alternatively, the cell population exposed to the disclosed compounds may be immortalized human fetal osteoblastic or osteogenic cells. If such cells are infused or implanted in a vertebrate subject, it may be advantageous to "immunoprotect" these non-self cells, or to immunosuppress (preferably locally) the recipient to enhance transplantation and bone or cartilage repair.

Within the present invention, an "effective amount" of a significant effect. For example, an "effective amount" for therapeutic uses is the amount of the composition comprising an active compound herein required to provide a clinically significant increase in healing rates in fracture repair; reversal of bone loss in osteoporosis; reversal of cartilage defects or disorders; prevention or delay of onset of osteoporosis; stimulation and/or augmentation of bone formation in fracture non-unions and distraction osteogenesis; increase and/or acceleration of bone growth into prosthetic devices: and repair of dental defects. Such effective amounts will be determined using routine optimization techniques and are dependent on the particular condition to be treated, the condition of the patient, the route of administration, the formulation, and the judgment of the practitioner and other factors evident to those skilled in the art. The dosage required for the compounds of the invention (for example, in osteoporosis where an increase in bone formation is desired) is manifested as a statistically significant difference in bone

35

55

mass between treatment and control groups. This difference in bone mass may be seen, for example, as a 5-20% or more increase in bone mass in the treatment group. Other measurements of clinically significant increases in healing may include, for example, tests for breaking strength and tension, breaking strength and torsion, 4-point bending, increased connectivity in bone biopsies and other biomechanical tests well known to those skilled in the art. General guidance for treatment regimens is obtained from experiments carried out in animal models of the disease of interest.

The dosage of the compounds of the invention will vary 10 according to the extent and severity of the need for treatment, the activity of the administered compound, the general health of the subject, and other considerations well known to the skilled artisan. Generally, they can be administered to a typical human on a daily basis on an oral dose of about 0.1 mg/kg-1000 mg/kg, and more preferably from about 1 mg/kg to about 200 mg/kg. The parenteral dose will appropriately be 20-100% of the oral dose.

Screening Assays

The osteogenic activity of the compounds used in the methods of the invention can be verified using in vitro  $^{\rm 20}$ screening techniques, such as the assessment of transcription of a reporter gene coupled to a bone morphogenetic proteinassociated promoter, as described above, or in alternative assays such as the following:

Technique for Neonatal Mouse Calvaria Assay (In vitro) This assay is similar to that described by Gowen M. & Mundy G. J Immunol (1986) 136:2478-82. Briefly, four days after birth, the front and parietal bones of ICR Swiss white mouse pups are removed by microdissection and split along the sagittal suture. The bones are incubated in BGJb  $_{30}$ medium (Irvine Scientific, Santa Ana, Calif.) plus 0.02% (or lower concentration)  $\beta$ -methylcyclodextrin, wherein the medium also contains test or control substances, at 37° C. in a humidified atmosphere of 5% CO₂ and 95% air for 96 hours

Following this, the bones are removed from the incubation media and fixed in 10% buffered formalin for 24-48 hours, decalcified in 14% EDTA for 1 week, processed through graded alcohols; and embedded in paraffin wax. Three  $\mu m$  sections of the calvaria are prepared. Represen-40 tative sections are selected for histomorphometric assessment of bone formation and bone resorption. Bone changes are measured on sections cut 200  $\mu$ m apart. Osteoblasts and osteoclasts are identified by their distinctive morphology.

Other auxiliary assays can be used as controls to determine non-BMP promoter-mediated effects of test com- 45 pounds. For example, mitogenic activity can be measured using screening assays featuring a serum-response element (SRE) as a promoter and a luciferase reporter gene. More specifically, these screening assays can detect signalling through SRE-mediated pathways, such as the protein kinase 50 C pathway. For instance, an osteoblast activator SREluciferase screen and an insulin mimetic SRE-luciferase screen are useful for this purpose. Similarly, test compound stimulation of cAMP response element (CRE)-mediated pathways can also be assayed. For instance, cells transfected with receptors for PTH and calcitonin (two bone-active agents) can be used in CRE-luciferase screens to detect elevated cAMP levels. Thus, the BMP promoter specificity of a test compound can be examined through use of these types of auxiliary assays.

In Vivo Assay of Effects of Compounds on Murine Calvarial 60 Bone Growth

Male ICR Swiss white mice, aged 4-6 weeks and weighing 13–26 gm, are employed, using 4–5 mice per group. The calvarial bone growth assay is performed as described in PCT application WO 95/24211. Briefly, the test compound 65 or appropriate control vehicle is injected into the subcutaneous tissue over the right calvaria of normal mice.

Typically, the control vehicle is the vehicle in which the compound was solubilized, and is PBS containing 5% DMSO or is PBS containing Tween (2 µl/10 ml). The animals are sacrificed on day 14 and bone growth measured by histomorphometry. Bone samples for quantitation are cleaned from adjacent tissues and fixed in 10% buffered formalin for 24–48 hours, decalcified in 14% EDTA for 1–3 weeks, processed through graded alcohols; and embedded in paraffin wax. Three to five  $\mu m$  sections of the calvaria are prepared, and representative sections are selected for histomorphometric assessment of the effects on bone formation and bone resorption. Sections are measured by using a camera lucida attachment to trace directly the microscopic image onto a digitizing plate. Bone changes are measured on sections cut 200  $\mu$ m apart, over 4 adjacent 1×1 mm fields on both the injected and noninjected sides of the calvaria. New 15 bone is identified by its characteristic woven structure, and osteoclasts and osteoblasts are identified by their distinctive morphology. Histomorphometry software (OsteoMeasure, Osteometrix, Inc., Atlanta) is used to process digitizer input to determine cell counts and measure areas or perimeters. Additional In Vivo Assays

Lead compounds can be further tested in intact animals using an in vivo, dosing assay. Prototypical dosing may be accomplished by subcutaneous, intraperitoneal or oral administration, and may be performed by injection, sustained release or other delivery techniques. The time period for administration of test compound may vary (for instance, 28 days as well as 35 days may be appropriate). An exemplary, in vivo subcutaneous dosing assay may be conducted as follows:

In a typical study, 70 three-month-old female Sprague-Dawley rats are weight-matched and divided into seven groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; a control group administered vehicle only; a PBS-treated control group; and a positive control group administered a compound (non-protein or protein) known to promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups.

Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. All animals are injected with calcein nine days and two days before sacrifice (two injections of calcein administered each designated day). Weekly body weights are determined. At the end of the 35-day cycle, the animals are weighed and bled by orbital or cardiac puncture. Serum calcium, phosphate, osteocalcin, and CBCs are determined. Both leg bones (femur and tibia) and lumbar vertebrae are removed, cleaned of adhering soft tissue, and stored in 70% ethanol for evaluation, as performed by peripheral quantitative computed tomography (pQCT; Ferretti, J. Bone (1995) 17:3538-64S), dual energy X-ray absorptiometry (DEXA; Laval-Jeantet A. et al. Calcif Tissue Intl (1995) 56:14-18; J. Casez et al. Bone and Mineral (1994) 26:61-68) and/or histomorphometry. The effect of test compounds on bone remodeling can thus be evaluated.

Lead compounds also be tested in acute ovariectomized animals (prevention model) using an in vivo dosing assay. Such assays may also include an estrogen-treated group as a control. An exemplary subcutaneous dosing assay is performed as follows:

In a typical study, 80 three-month-old female Sprague-Dawley rats are weight-matched and divided into eight groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; three control groups (sham ovariectomized (sham OVX)+vehicle only; ovariectomized (OVX)+vehicle only; PBS-treated OVX); and a control OVX group that is administered a compound known to promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups of OVX animals.

Since ovariectomy (OVX) induces hyperphagia, all OVX animals are pair-fed with sham OVX animals throughout the 35 day study. Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. Alternatively, test compound can be formulated in implantable pellets that are implanted for 35 days, or may be administered orally, such as by gastric gavage. All animals, including sham OVX/ vehicle and OVX/vehicle groups, are injected intraperitoneally with calcein nine days and two days before sacrifice (two injections of calcein administered each designated day, to ensure proper labeling of newly formed bone). Weekly body weights are determined. At the end of the 35-day cycle, the animals' blood and tissues are processed as described above.

Lead compounds may also be tested in chronic OVX animals (treatment model). An exemplary protocol for treatment of established bone loss in ovariectomized animals that can be used to assess efficacy of anabolic agents may be performed as follows. Briefly, 80 to 100 six month old female, Sprague-Dawley rats are subjected to sham surgery 20 (sham OVX) or ovariectomy (OVX) at time 0, and 10 rats are sacrificed to serve as baseline controls. Body weights are recorded weekly during the experiment. After approximately 6 weeks of bone depletion (42 days), 10 sham OVX and 10 OVX rats are randomly selected for sacrifice as depletion period controls. Of the remaining animals, 10 sham OVX 25 and 10 OVX rats are used as placebo-treated controls. The remaining OVX animals are treated with 3 to 5 doses of test drug for a period of 5 weeks (35 days). As a postitive control, a group of OVX rats can be treated with an agent such as PTH, a known anabolic agent in this model (Kimmel et al. Endocrinology (1993) 132:1577-84). To determine effects on bone formation, the following procedure can be followed. The femurs, tibiae and lumbar vertebrae 1 to 4 are excised and collected. The proximal left and right tibiae are used for pQCT measurements, cancellous bone mineral density (BMD) (gravimetric determination), and histology, while the midshaft of each tibiae is subjected to cortical BMD or histology. The femurs are prepared for pQCT scanning of the midshaft prior to biomechanical testing. With respect to lumbar vertebrae (LV), LV2 are processed for BMD (pQCT may also be performed); LV3 are prepared for undecalcified ⁴⁰ bone histology; and LV4 are processed for mechanical testing.

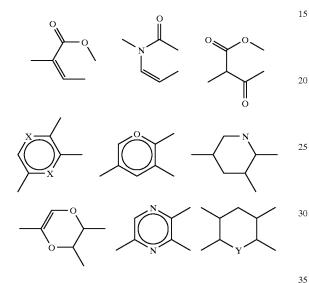
Nature of the Compounds Useful in the Invention

All of the compounds of the invention contain two aromatic systems,  $Ar^1$  and  $Ar^2$ , spaced apart by a linker at a 45distance of 1.5–15 Å, and all generally contain at least one nitrogen atom. A summary of the structural features of the compounds included within the invention is shown in FIG. 1.

As shown,  $Ar^1$  and  $Ar^2$  may include various preferred 50 embodiments. These are selected from the group consisting of a substituted or unsubstituted aromatic ring system containing a five-membered heterocycle; a substituted or unsubstituted aromatic ring system containing a six-membered heterocycle; a substituted or unsubstituted naphthalene moiety; and a substituted or unsubstituted benzene moiety. There are 16 possible combinations of these embodiments if Ar¹ and Ar², are considered distinguishable. As will be clear, however, the designation of one aromatic system as Ar¹ and the other as  $Ar^2$  is arbitrary; thus there are only ten possible combinations. However, for simplicity,  $Ar^1$  and  $Ar^2$  are designated separately with the realization that the choice is arbitrarily made. All linkers described herein if not palindromic, are considered link  $Ar^1$  to  $Ar^2$  or vice-versa whether or not the complementary orientation is explicitly shown. Thus, if Ar¹ and Ar² are different and a linker is 65 specified as —CONR, it is understood that also included is the linker —NRCO—.

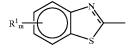
The non-interfering substituents on the aromatic system represented by Ar¹ and the non-interfering substituents on the aromatic system represented by  $Ar^2$  are represented in the formulae herein by  $R^1$  and  $R^2$ , respectively. Generally, these substituents can be of wide variety. Among substituents that do not interfere with the beneficial effect of the compounds of the invention on bone in treated subjects are included alkyl (1-6C, preferably lower alkyl 1-4C), including straight or branched-chain forms thereof, alkenyl (1-6C, preferably 1-4C), alkynyl (1-6C, preferably 1-4C), all of which can be straight or branched chains and may contain further substituents; halogens, including F, Cl, Br and I; siloxy, OR, SR, NR₂, OOČR, COOR, NČOR, NCOOR, and benzoyl,  $CF_3$ ,  $-OCF_3$ ,  $SCF_3$ ,  $-N(CF_3)_2$ , CN, SO, SO₂R and SO₃R wherein R is alkyl (1–6C) or is H. Where R¹ or  $\mathbf{R}^2$  substituents are in adjacent positions in the aromatic system, they may form a ring. Further, rings may be included in substituents which contain sufficient carbon and heteroatoms to provide this possibility.

Preferred non-interfering substituents include hydrocarbyl groups of 1-6C, including saturated and unsaturated, linear or branched hydrocarbyl as well as hydrocarbyl groups containing ring systems; halo groups, alkoxy, hydroxy, amino, monoalkyl- and dialkylamino where the alkyl groups are 1–6C,  $CN_3$ , CF, and COOR. Although the number of  $R^1$  and  $R^2$  may typically be 0–4


or 0-5 depending on the available positions in the aromatic system, preferred embodiments include those wherein the number of  $R^1$  is 0, 1 or 2 and of  $R^2$  is 0, 1 or 2.

The linker group, L, may be a covalent bond or any group having a valence of at least two and covering a linear distance of from about 1.5 to about 15 Angstroms, including those that contain cyclic moieties, that meet this spatial requirement. Useful linkers are divided, by definition herein, into three general categories: (1) flexible non-conjugating linkers, (2) flexible conjugating linkers, and (3) constrained linkers. The preferred choice of linker will depend on the  $_{35}$  choices for  $Ar^1$  and  $Ar^2$ .

As defined herein, flexible non-conjugating linkers are those that link only one position of Ar¹ to one position of Ar², and provide only a single covalent bond or a single chain between Ar¹ and Ar². The chain may contain branches, but may not contain  $\pi$ -bonds (except in the branches) or cyclic portions in the chain. The linker atoms in the chain itself rotate freely around single covalent bonds, and thus the linker has more than two degrees of freedom. Particularly useful flexible non-conjugating linkers, besides a covalent bond, are those of the formulae: -NR-, -CR₂-, -S-, or -O-, wherein R is H or alkyl (1-6C), more preferably H or lower alkyl (1-4C) and more preferably H. Also preferred are those of the formulae: -NRCO-, -CONR-,  $-CR_2S$ -,  $-SCR_2$ -,  $-OCR_2$ -, - $CR_2O$ -, -NRNR-,  $-CR_2CR_2$ -,  $-NRSO_2$ -, - $SO_2NR$ -,  $-CR_2CO$ -,  $-COCR_2$ -, and -NR-NR-CO- $CR_2$ - and its complement  $-CR_2$ -CO-NR-NR-, including the isosteres thereof. Also preferred are those of the formulae:  $-NR(CR_2)_2NR$ ,  $-O(CR_2)$ 20-, and -S(CR2)2S-, including the isosteres thereof. The optimum choice of linker is dependent on the nature of  $Ar^1$  and  $Ar^2$ .


Flexible conjugating linkers are those that link only one position of Ar¹ to one position of Ar², but incorporate at least one double or triple bond or one or more cyclic systems and thus have only two degrees of freedom. A flexible conjugating linker may form a completely conjugated  $\pi$ -bond linking system between  $Ar^1$  and  $Ar^2$ , thus providing for co-planarity of  $Ar^1$  and  $Ar^2$ . Examples of useful flexible conjugating linkers include: -RC=CR-; -N=N-; -C = C -; -RC = N -; -N = CR -; -NR - N = CR -;-NR-NR-CO-CR=CR-; and the like, where R is H or alkyl (1-6C); preferably H or lower alkyl (1-4C); and more preferably H.

Constrained linkers are those that have more than one point of attachment to either or both  $Ar^1$  and  $Ar^2$  and, thus, generally allow for only one degree of freedom. Constrained linkers most frequently form fused 5- or 6-membered cyclic moieties with  $Ar^1$  and/or  $Ar^2$  where either  $Ar^1$  or  $Ar^2$  has at least one substituent appropriately positioned to form a second covalent bond with the linker, e.g., where  $Ar^2$  is a phenyl group with a reactive, ortho-positioned substituent, or is derivatized to the linker directly at the ortho position. (Although the aromatic moieties should properly be refined to as phenylene or naphthylene in such cases, generally the term "phenyl" or "naphthyl" is used herein to include both monovalent and bivalent forms of these moieties). Examples of particularly useful constrained linkers include



and the like, where X is O, N, S or CR, and Y is  $CR_2$  or C=O.

Ar¹ is an aromatic system containing a five-membered heterocycle, of the formula:



wherein the dotted line represents an optional  $\pi$ -bond; each  $R^1$  is independently a non-interfering substituent; and

m is an integer of 0–4.

The nature of the R¹ and R² is outlined above. Preferably, L is selected from the group consisting of -NRCO- and -CONR-, wherein R is H or alkyl (1-6C) and R² is  $-NR_2$  or -OR where each R is independently H or alkyl (1-6C). The preferred compound is selected from the group 55 consisting of Compound Nos. 59-0102 and 59-0070.

Synthesis of the Compounds Useful in the Invention

Many of the compounds useful in the invention are commercially available and can be synthesized by artknown methods. Those compounds useful in the invention which are new compounds, can similarly be obtained by methods generally known in the art.

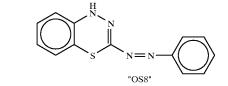
60

65

The following examples are intended to illustrate, but not to limit, the invention.

#### Preparation A

Compound 59-0008 was synthesized according to the procedure of McDonald, W. S., et al. *Chem Comm* (1969)


392-393; Irving, H. N. N. H. et al. Anal Chim Acta (1970) 49:261–266. Briefly, 10.0 g of dithizone was taken up in 100 ml EtOH and 50 ml AcOH and heated at reflux for 18 h. After cooling, this was diluted first with 100 ml water and then with 50 ml 1N NaOH. This was then further neutralized by the addition of 6N NaOH to bring the pH to 5.0. This deep purple mixture was then concentrated on a rotavapor to remove organics. Once the liquid had lost all of its purple color, this was filtered to collect the dark precipitate. Purification by flash chromatography (4.5×25.7 cm; EtAc/Hep. (1:4);  $R_f 0.22$ ) followed by recrystalization from EtOH gave 2.15 g (25% yield) of dark purple crystals, mp=184-185° ¹H NMR (CDCl₃) 7.90 (d of d,  $J_1=7.7$ ,  $J_2=2.2$ , 2H), 7.64 (hump, 1H), 7.49 (m, 3H), 7.02 (m, 1H), 6.91 (m, 2H), 6.55 (d, J=8.1, 1H). MS (EI) 254 (47, M+), 105 (26), 77 [100], 51 (27). HRMS (EI, M+) 254.0626 (calcd 254.0626182). Anal.

Calcd for  $C_{13}H_{10}N_4S$ : C, 61.40; H, 3.96; N, 22.03. Found: C, 61.40; H, 4.20; N, 22.06.

## EXAMPLE 1

#### High Throughput Screening

Several thousand compounds were tested in the assay system set forth in U.S. Ser. No. 08/458,434, filed Jun. 2, 1995, and incorporated herein by reference. The standard positive control was a compound of the invention, 59-0008 (also denoted "OS8"), which is of the formula:



In more detail, the 2T3-BMP-2-LUC cells, a stably transformed osteoblast cell line described in Ghosh-Choudhury et al. Endocrinology (1996) 137:331-39, referenced above, was employed. The cells were cultured using  $\alpha$ -MEM, 10% 40 FCS with 1% penicillin/streptomycin and 1% glutamine ("plating medium"), and were split 1:5 once per week. For the assay, the cells were resuspended in a plating medium containing 4% FCS, plated in microtiter plates at a concentration of  $5 \times 10^3$  cells (in 50 µl)/well, and incubated for 24 hours at 37° C. in 5%  $\dot{CO}_2$ . To initiate the assay, 50  $\mu$ l of the test compound or the control in DMSO was added at 2× concentration to each well, so that the final volume was 100  $\mu$ l. The final serum concentration was 2% FCS, and the final DMSO concentration was 1%. Compound 59-0008 (10  $\mu$ M) was used as a positive control. 50

The treated cells were incubated for 24 hours at 37° C. and 5% CO₂. The medium was then removed, and the cells were rinsed three times with PBS. After removal of excess PBS, 25  $\mu$ l of 1× cell culture lysing reagent (Promega #E153A) was added to each well and incubated for at least ten minutes. Optionally, the plates/samples could be frozen at this point. To each well was added 50  $\mu$ l of luciferase substrate (Promega #E152A; 10 ml Promega luciferase assay buffer per 7 mg Promega luciferase assay substrate). Luminescence was measured on an automated 96-well luminometer, and was expressed as either picograms of luciferase activity per microgram of protein.

In this assay, compound 59-0008 (3-phenylazo-1H-4,1,2benzothiadiazine) exhibited a pattern of reactivity, as shown in FIG. 2. The activity for compound 59-0008 was maximal at a concentration of approximately  $3-10 \ \mu M$  and, more particularly, at about  $3 \ \mu M$ , and thus provided a response of

approximately 175 light emission units. Accordingly, other tested compounds were evaluated at various concentrations, and these results were compared to the results obtained for 59-0008 at 10  $\mu$ M (which value was normalized to 100). For instance, any tested compound in FIG. 3 and FIG. 4 that 5 showed greater activity than 10  $\mu$ M of 59-0008 would result in a value over 100.

As shown in FIG. 3 (46 sheets) and FIG. 4 (28 sheets), several compounds were found to be particularly effective.

## EXAMPLE 2

#### In Vivo Calvarial Bone Growth Data

Compound 59-0008 was assayed in vivo according to the procedure described previously (see "In vivo Assay of 15 prepared using standard methods. Effects of Compounds on Murine Calvarial Bone Growth", supra). As compared to a vehicle control, compound 59-0008 induced a 4-fold increase in width of new calvarial bone.

#### **EXAMPLE 3**

#### Chondrogenic Activity

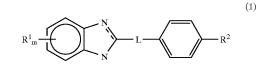
Compounds 59-008, 59-0102 and 50-0197 were assaved for effects on the differentiation of cartilage cells, as com- ²⁵ pared to the action of recombinant human BMP-2. Briefly, a mouse clonal chondrogenic cell line, TMC-23, was isolated and cloned from costal cartilage of transgenic mice containing the BMP-2 gene control region driving SV-40 large T-antigen, generated as described in Ghosh-Choudhury 30 et al Endocrinology 137:331-39, 1996. These cells were cultured in DMEM/10% FCS, and were shown to express T-antigen, and also to produce aggrecan (toluidine blue staining at pH 1.0) and Type-II collagen (immunostaining) by 7 days after confluence. 35

For measurement of alkaline phosphatase (ALP) activity, the technique of LF Bonewald et al. J Biol Chem (1992) 267:8943-49, was employed. Briefly, TMC-23 cells were plated in 96 well microtiter plates in DMEM containing 10% FCS at  $4 \times 10^3$  cells/well. Two days after plating, the cells 40 were confluent and the medium was replaced with fresh medium containing 10% FCS and different concentrations of compounds or recombinant BMP-2. After an additional 2 or 5 days incubation, the plates were washed twice with PBS, and then lysing solution (0.05% Triton X-100) was added (100  $\mu$ l/well). The cells were lysed by three freeze-thaw cycles of -70° C. (30 min), followed by 37° C. (30 min with 45 shaking). Twenty microliters of cell lysates were assayed with 80  $\mu$ l of 5 mM p-nitrophenol phosphate in 1.5 M 2-amino-2-methyl-propanol buffer, pH 10.3 (Sigma ALP kit, Sigma Chemical Co., St. Louis, Mo.) for 10 min at 37° C. 50 The reaction was stopped by the addition of  $100 \,\mu l$  of 0.5 M NaOH. The spectrophotometric absorbance at 405 nm was compared to that of p-nitrophenol standards to estimate ALP activity in the samples. The protein content of the cell lysates was determined by the Bio-Rad protein assay kit (Bio-Rad, 55 Hercules, Calif.). Specific activity was calculated using these two parameters.

At day 2, compounds 59-0008 (10⁻⁹ M), 59-0102 (10⁻⁷ M) and 59-0197 ( $10^{-9}$  M) increased ALP levels approximately 3-, 2- and 2.5-fold, respectively, as compared to the vehicle control. Recombinant BMP2 at 100, 50 or 10 ng/ml induced ALP levels approximately 10-, 4- or 1.5-fold, respectively, as compared to the vehicle control.

# **EXAMPLE 4**

#### Synthesis of Exemplary Compounds


Compounds of the invention can be synthesized by the 10 procedures described in Dryanska, V. and Ivanov, K. Synthesis (1976) 1:37-8, using the described embodiment of Ar² and the appropriate analog of the benzothiazole embodied in  $Ar^1$ .

Alternates to the olefin linker described can also be

We claim:

20

1. A method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula:



wherein

each  $R^1$  and  $R^2$  is independently a non-interfering substituent:

m is an integer of 0-4;

the dotted line represents an optional  $\pi$  bond; and

L is a flexible non-conjugating linker.

2. The method of claim 1 wherein L is selected from the group consisting of -NRCO- and -CONR-, wherein R is H or alkyl (1–6C).

3. The method of claim 1 wherein  $R^2$  is  $-NR_2$  or -ORwhere each R is independently H or alkyl (1-6C).

4. The method of claim 1 wherein said compound is selected from the group consisting of Compound Nos. 59-0102 and 59-0070.

5. The method of claim 1 wherein said condition is osteoporosis, bone fracture or deficiency, primary or secondary hyperparathyroidism, periodontal disease or defect, metastatic bone disease, osteolytic bone disease, post-plastic surgery, post-prosthetic joint surgery, or post-dental implantation.

6. The method of claim 1 which further comprises administering to said subject one or more agents that promote bone growth or that inhibit bone resorption.

7. The method of claim 6 wherein said agents are selected from the group consisting of bone morphogenetic factors, anti-resorptive agents, osteogenic factors, cartilage-derived morphogenic proteins, growth hormones, and differentiating factors.