12,758 research outputs found
Active magnetic bearings applied to industrial compressors
The design and shop test results are given for a high-speed eight-stage centrifugal compressor supported by active magnetic bearings. A brief summary of the basic operation of active magnetic bearings and the required rotor dynamics analysis are presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofits of magnetic bearings in existing machinery are discussed with supporting analysis of a four-stage centrifugal compressor. The current status of industrial machinery in North America using this new support system is presented and recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery
Particle acceleration at ultrarelativistic shocks: an eigenfunction method
We extend the eigenfunction method of computing the power-law spectrum of
particles accelerated at a relativistic shock fronts to apply to shocks of
arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo
simulations, we find the index of the power-law distribution of accelerated
particles which undergo isotropic diffusion in angle at an ultrarelativistic,
unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant
phase-space density and p the momentum). This corresponds to a synchrotron
index for uncooled electrons of a=0.62 (taking cooling into account a=1.12),
where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also
present an approximate analytic expression for the angular distribution of
accelerated particles, which displays the effect of particle trapping by the
shock: compared with the non-relativistic case the angular distribution is
weighted more towards the plane of the shock and away from its normal. We
investigate the sensitivity of our results to the transport properties of the
particles and the presence of a magnetic field. Shocks in which the ratio of
Poynting to kinetic energy flux upstream is not small are less compressive and
lead to larger values of .Comment: Minor additions on publicatio
Prolific pair production with high-power lasers
Prolific electron-positron pair production is possible at laser intensities
approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron
trajectories and interactions at the nodes (B=0) of two counter-propagating,
circularly polarised laser beams shows that a cascade of gamma-rays and pairs
develops. The geometry is generalised qualitatively to linear polarisation and
laser beams incident on a solid target.Comment: 4 pages, 1 figure, minor revisions, accepted for publication in
Physical Review Letter
Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction
Understanding basic controls on aquifer microbiology is essential to managing water resources and predicting impacts of future environmental change. Previous theoretical and laboratory studies indicate that pH can influence interactions between microorganisms that reduce ferric iron and sulfate. In this study, we test the environmental relevance of this relationship by examining broad-scale geochemical data from anoxic zones of aquifers. We isolated data from the U.S. Geological Survey National Water Information System for 19 principal aquifer systems. We then removed samples with chemical compositions inconsistent with iron- and sulfate-reducing environments and evaluated the relationships between pH and other geochemical parameters using Spearman's rho rank correlation tests. Overall, iron concentration and the iron-sulfide concentration ratio of groundwater share a statistically significant negative correlation with pH (P < 0.0001). These relationships indicate that the significance of iron reduction relative to sulfate reduction tends to increase with decreasing pH. Moreover, thermodynamic calculations show that, as the pH of groundwater decreases, iron reduction becomes increasingly favorable relative to sulfate reduction. Hence, the relative significance of each microbial reaction may vary in response to thermodynamic controls on microbial activity. Our findings demonstrate that trends in groundwater geochemistry across different regional aquifer systems are consistent with pH as a control on interactions between microbial iron and sulfate reduction. Environmental changes that perturb groundwater pH can affect water quality by altering the balance between these microbial reactions.Citation: Kirk, M. F., Jin, Q. and Haller, B. R. (2015), Broad-Scale Evidence That pH Influences the Balance Between Microbial Iron and Sulfate Reduction. Groundwater. doi:10.1111/gwat.1236
Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy
The next generation of spectroscopic surveys will have a wealth of
photometric data available for use in target selection. Selecting the best
targets is likely to be one of the most important hurdles in making these
spectroscopic campaigns as successful as possible. Our ability to measure dark
energy depends strongly on the types of targets that we are able to select with
a given photometric data set. We show in this paper that we will be able to
successfully select the targets needed for the next generation of spectroscopic
surveys. We also investigate the details of this selection, including
optimisation of instrument design and survey strategy in order to measure dark
energy. We use color-color selection as well as neural networks to select the
best possible emission line galaxies and luminous red galaxies for a
cosmological survey. Using the Fisher matrix formalism we forecast the
efficiency of each target selection scenario. We show how the dark energy
figures of merit change in each target selection regime as a function of target
type, survey time, survey density and other survey parameters. We outline the
optimal target selection scenarios and survey strategy choices which will be
available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201
Diffuse Galactic Gamma Rays from Shock-Accelerated Cosmic Rays
A shock-accelerated particle flux \propto p^-s, where p is the particle
momentum, follows from simple theoretical considerations of cosmic-ray
acceleration at nonrelativistic shocks followed by rigidity-dependent escape
into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s ~
2.8 provides an adequate fit to the Fermi-LAT gamma-ray emission spectra of
high-latitude and molecular cloud gas when uncertainties in nuclear production
models are considered. A break in the spectrum of cosmic-ray protons claimed by
Neronov, Semikoz, & Taylor (PRL, 108, 051105, 2012) when fitting the gamma-ray
spectra of high-latitude molecular clouds is a consequence of using a
cosmic-ray proton flux described by a power law in kinetic energy.Comment: Version to correspond to published letter in PRL; corrected Fig.
The cartography of Venus with Magellan data
Maps of Venus based on Magellan data are being compiled at 1:50,000,000, 1:5,000,000 and 1:1,500,000 scales. Topographic contour lines based on radar altimetry data are overprinted on the image maps, along with feature nomenclature. Map controls are based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control for bodies where framing cameras were used, is not feasible with the radar images of Venus. Preliminary synthetic aperture radar (SAR) image maps have some data gaps and cosmetic inconsistencies, which will be corrected on final compilations. Eventual revision of geodetic controls and of the adopted Venusian spin-axis location will result in geometric adjustments, particularly on large-scale maps
The Large and Small Scale Structures of Dust in the Star-Forming Perseus Molecular Cloud
We present an analysis of ~3.5 square degrees of submillimetre continuum and
extinction data of the Perseus molecular cloud. We identify 58 clumps in the
submillimetre map and we identify 39 structures (`cores') and 11 associations
of structures (`super cores') in the extinction map. The cumulative mass
distributions of the submillimetre clumps and extinction cores have steep
slopes (alpha ~ 2 and 1.5 - 2 respectively), steeper than the Salpeter IMF
(alpha = 1.35), while the distribution of extinction super cores has a shallow
slope (alpha ~ 1). Most of the submillimetre clumps are well fit by stable
Bonnor-Ebert spheres with 10K < T < 19K and 5.5 < log_10(P_ext/k) < 6.0. The
clumps are found only in the highest column density regions (A_V > 5 - 7 mag),
although Bonnor-Ebert models suggest that we should have been able to detect
them at lower column densities if they exist. These observations provide a
stronger case for an extinction threshold than that found in analysis of less
sensitive observations of the Ophiuchus molecular cloud. The relationship
between submillimetre clumps and their parent extinction core has been
analyzed. The submillimetre clumps tend to lie offset from the larger
extinction peaks, suggesting the clumps formed via an external triggering
event, consistent with previous observations.Comment: 38 pages, 12 figures, accepted by Astrophysical Journal slight
changes to original due to a slight 3" error in the coordinates of the SCUBA
ma
Incoherent Transport through Molecules on Silicon in the vicinity of a Dangling Bond
We theoretically study the effect of a localized unpaired dangling bond (DB)
on occupied molecular orbital conduction through a styrene molecule bonded to a
n++ H:Si(001)-(2x1) surface. For molecules relatively far from the DB, we find
good agreement with the reported experiment using a model that accounts for the
electrostatic contribution of the DB, provided we include some dephasing due to
low lying phonon modes. However, for molecules within 10 angstrom to the DB, we
have to include electronic contribution as well along with higher dephasing to
explain the transport features.Comment: 9 pages, 5 figure
- …